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%ØÅÃÕÔÉÖÅ 3ÕÍÍÁÒÙ 
The economics of electricity storage are currently in the focus of research, by 
academics, utilities, potential investors as well as policy makers. The present document 
is the result of the analysis of more than 200 publications on that subject. It aims at 
ÐÒÅÓÅÎÔÉÎÇ ÔÈÅ ȰÓÔÁÔÅ ÏÆ ÔÈÅ ÁÒÔȱ ÒÅÇÁÒÄÉÎÇ ÒÅÓÅÁÒÃÈ ÏÎ ÔÈÅ ÅÃÏÎÏÍÉÃÓ ÏÆ ÅÌÅÃÔÒÉÃÉÔÙ 
storage. Three particular aspects are given attention to: the methodologies used, the 
profitability results obtained and the impact of regulation on storage economics. 

Assessing the economics of storage generally implies developing and using models. 
-ÁÎÙ ÒÅÓÅÁÒÃÈÅÓ ÕÓÅ ȰÅÎÇÉÎÅÅÒÉÎÇ ÍÏÄÅÌÓȱȟ ÁÓÓÅÓÓÉÎÇ ÓÔÏÒÁÇÅ ÔÈÒÏÕÇÈ ÍÁÒËÅÔ ÄÁÔÁȟ 
without assessing its impact on the system. These approaches require less data and less 
ÃÏÍÐÌÅØ ÍÏÄÅÌÌÉÎÇ ÔÈÁÎ ȰÓÙÓÔÅÍ ÁÐÐÒÏÁÃÈÅÓȱ ÔÈÁÔ ÁÒÅ ÕÓÅÄ ÔÏ ÁÓÓÅÓÓ ÒÅÁÌ ÉÎÖÅÓÔÍÅÎÔ 
projects, or study long term system evolutions. Both approaches are complementary, as 
ÏÎÅ ÁÎÓ×ÅÒÓ ÔÈÅ ÑÕÅÓÔÉÏÎ ÆÒÏÍ ÁÎ ÉÎÖÅÓÔÏÒȭÓ ÐÏÉÎÔ ÏÆ ÖÉÅ×ȟ ÉÎ Á ÇÉÖÅÎ ÒÅÇÕÌÁÔÏÒÙ ÃÏÎÔÅØÔȟ 
and the other answers the question of the interest of storage to increase social welfare. 

There is no universal answer on whether storage is a profitable investment or adds 
value to a system. Recent engineering studies seem pessimistic regarding the possibility 
to earn sufficient revenues in power and reserve markets in order to pay back the 
significant investments. A number of value pools have been identified in addition to 
arbitrage and reserve market case.  

A comprehensive and consistent assessment of cross value chain value of storage has 
not yet been performed for many market situations; however publications on specific 
combinations can be found.  

System studies provide an even larger bandwidth of results than engineering studies. 
While storage value has been identified in many cases, a negative impact is also possible 
if the deployment of storage requires additional investment in grid or generation assets. 

All attempts at storage valuation require making assumptions on storage regulation. 
This may range from fees and technical rules, ownership questions or fundamental 
market regulation. Small technical issues can have a large impact on the viability of 
storage. As all current valuation frameworks for large scale storage originate in the 
deregulation of the power system, any change will have an impact on storage. Storage 
will thus be affected by the upcoming regulatory discussions emerging from the 
developments in the power system, such as market design and rules for RES integration 
or considerations on ownership and operation of storage devices. 

This literature review also includes recommendations for further research. These 
should be regarded as a base for discussion. 
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1 )ÎÔÒÏÄÕÃÔÉÏÎ 
This document summarises the results of a joint EDF R&D / JRC-IET research effort 
about energy storage. It provides a summary review of current literature on energy 
storage with particular attention to its technical and economic evaluation. 

The motivation for the literature review originally resulted from the interest of both 
organisations in identifying relevant subjects to study in a joint project. As such, it is 
intended at providing information for decision makers and scientific advisers of both 
organisations as guidance for further research. It is also meant as a document 
summarising current issues in the field of electricity storage in Europe. The goal of this 
joint study is to identify the most relevant issues electricity storage is facing in the 
current European environment, in particular to: 

¶ Understand the current market environment for electricity storage including 
drivers and barriers to its deployment as well as the impact of technology 
developments 

¶ Identify the methodologies used for assessing storage value as defined by the 
fundamental assumptions, the problem definition and the solving strategies 

¶ Define the range of possible regulatory environments which could address the 
current challenges for electricity storage 

Meeting these goals requires a critical review of previous studies that address the 
storage business case from different perspectives and that make use of different 
economic approaches. The key trends identified or possible controversies provide 
important input for future work. The authors thus aim at identifying literature 
providing evidence both supporting and contradicting hypotheses on the value of 
electricity storage. 

In total, more than 200 publications were reviewed. These include work published by 
academic researchers, consultants as well as stakeholder financed studies carried out 
by either of the two previous groups. In some occasions, publications were the result of 
collaborations of several groups1. Also, we confront the study results with current 
stakeholder organisation's position papers.  

The scope of the analysis is the European Union (EU). Studies from the US are also 
selectively included if deemed relevant to the European context. In particular, the wider 
regulatory variety of the US electricity markets makes these worth studying. Moreover, 
the analysis is focused on studies published during the last 10 years with a focus on 
more recent publications, taking into account the deregulation of power markets and 
the integration of significant quantities of renewable energy. The latest publications 
included in this review date from May 2013. The appendix provides a more detailed 
overview of the literature studied. 

No restrictions were applied regarding the electricity value chain steps considered 
however studies on the application of generation and trading make up for a large share 
of the material reviewed. Transport and distribution issues are nevertheless addressed 

                                                        
1 E.g. the dena II grid study [49]  was the result of collaboration between academics, consultants, TSOs published by a 
public private partnership. 
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by a number of recent publications. We addressed all technologies of electricity storage 
allowing a back to back conversion (thermal storage is therefore not considered here). 

This report is structured in three parts defined by the aspects discussed with some 
publications analysed in more than one chapter: 

¶ A review on the methodologies used in the studies 

¶ The profitability of storage from different perspectives as seen by different 
studies 

¶ The impact of regulation on the storage business case 

While the second chapter will likely be the starting point for the impatient reader 
interested in comparing numerical results, the other chapters are regarded as equally 
important by the authors in order to understand the framework within which storage 
operation, and consequently valuation, is possible. 
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2  -ÅÔÈÏÄÏÌÏÇÙ ÏÆ %ÌÅÃÔÒÉÃÉÔÙ 3ÔÏÒÁÇÅ !ÓÓÅÓÓÍÅÎÔ 

2.1 Motivation for studying methodology  

A number of different mathematical models are applied when studying the interactions 
of the different parts of the electricity value chain and in particular power generation 
and trading. The analysis of the methods used in literature to investigate the role of 
storage is a way to have a clear view of what is available today, what has been used 
before, and what are the perspectives and coming trends. Our literature review of the 
methodologies used was mainly guided by the following three questions: 

¶ Are there generally accepted methodologies to assess the economics of electricity 
storage such as for example the methodologies used to study interconnections2?  

¶ What are the underlying hypotheses of the most frequently used mathematical 
ÍÏÄÅÌÓ ÁÎÄ ÈÏ× ÄÏ ÔÈÅÙ ÌÉÍÉÔ ÔÈÅ ÒÅÓÕÌÔÓȭ ÖÁÌÉÄÉÔÙ ɉÁÓ ÆÏÒ ÅØÁÍÐÌÅȡ ÐÅÒÆÅÃÔ ÐÒÉÃÅ 
forecast, marginal analysis implying that the storage device has no impact on the 
prices, etc.)? 

¶ Are there gaps in the subjects studied inherent to the complexity and inadequacy 
of models? Does the fact that some subjects are less often studied than others be 
related to the fact that the subject is new, or/and technically difficult to model 
(e.g. storage services mutualisation)? 

Moreover, understanding the methodologies proposed in literature is also a good way 
to better understand our own models, as it allows us to evaluate both their adequacy to 
our needs (what can we do/not do with these models, are there good methods widely 
used that we could adopt?) and their results (can we benchmark them with others, and 
what are the differences?). 

2.2 Overview on power system modelling approaches  
As stated above, analysing the methodologies used to assess the interest of storage is 
useful, particularly for stakeholders or investors who wish to have a better 
understanding of what models can and cannot tell them. However, in addition to the fact 
that power system modelling is a vast world, the language used to describe models and 
mathematical techniques often represent an important barrier for people not familiar 
with modelling. And as the terms are often used in many different ways by authors, not 
getting lost in such a semantic jungle is quite challenging. 

Therefore, the objective of the following paragraphs is to provide a brief introduction to 
power system modelling, and to present some useful definitions and examples, in order 
to help the reader classifying and understanding models. 

This is an ambitious task: power system modelling is a very vast world and it is not 
always possible to propose a common analysis framework for models dealing with very 
different subjects (from modelling voltage variations in grids to modelling the 
interactions between players in electricity markets for example). As a result, this report 
is only a first step in that direction and aims at creating a basis for discussion. 

                                                        
2 See e.g. ENTSO-EȭÓ ÐÁÐÅÒ ÏÎ ÃÏÓÔ ÂÅÎÅÆÉÔÓ ÁÎÁÌÙÓÉÓ [55] : there is a clear vision of the use of market model and 
network models to decide which interconnections need to be prioritized 
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Figure 1: A semantic jungle of power system modelling terminology  

2.2.1 Preliminary definitions  

4ÈÅÒÅ ÉÓÎȭÔ Á ÕÎÉÆÉÅÄ ÄÅÆÉÎÉÔÉÏÎ ÏÆ ÔÈÅ ÔÅÒÍ ȰÍÏÄÅÌȱȟ ÁÓ ÁÕÔÈÏÒÓ ÔÅÎÄ ÔÏ ÐÒÏÐÏÓÅ Á 
definition that fits to the models they use, and that is not always broad enough. A model 
ÉÓ ȰÓÏÍÅÔÈÉÎÇȱ ÔÈÁÔ ÉÓ ÕÓÅÄ ÔÏ ÄÅÓÃÒÉÂÅȟ ÁÎÄ ÐÏÓÓÉÂÌÙ ÓÉÍÕÌÁÔÅȟ Á ÐÈÅÎÏÍÅÎÏÎȟ Á ÐÒÏÃÅÓÓȟ 
an activity, etc.  Most of the models used in the reviewed literature fall into the category 
ÏÆ ȰÏÐÔÉÍÉÓÁÔÉÏÎ ÍÏÄÅÌÓȱȢ 4ÈÉÓ ÔÙÐÅ ÏÆ model generally contains the following elements: 

¶ State / free variables describing the state of the system studied ɀ for example, 
frequency level, or generation cost can be state variables. 

¶ Decision variables allowing controlling the system, i.e. to modify state variables ɀ 
for example, the level of production can impact the frequency level, and the 
generation cost will vary according to the power plants used. 

¶ Sets of constraints on the variables: generally, both state and decision variables 
must be contained between boundaries (frequency cannot be negative; power 
plants have maximum capacities, etc.). 

¶ Parameters: this is a decision variable whose value is exogenous to the model 
(i.e. fixed by the user). For example, the power plants that are available and their 
technical characteristics (max/min capacities, heat rates, etc.) can be 
parameters. A model should be usable with different sets of data, i.e. different 
values of the parameters.  

¶ Objective function(s): these are composed by a function of the decision variables, 
ÁÎÄ ÂÙ Á ÃÏÎÓÔÒÁÉÎÔ ÏÎ ÔÈÁÔ ÆÕÎÃÔÉÏÎȭÓ ÏÕÔÐÕÔȢ &ÏÒ ÅØÁÍÐÌÅȟ ÉÔ ÃÁÎ ÂÅ ÔÏ ÍÁÉÎÔÁÉÎ 
the frequency level (function) at 50 Hz (constraint), or to minimise (constraint) 
the production cost (function). For a given optimal solution according to an 
objective function, i.e. for given values of the state variables, the value of the 
decision variables can be obtained. 

Running the model with a given objective function and set of parameters/constraints3 
consists of solving a given mathematical problem4 ɀ the same mathematical problem 

                                                        
3 Using or not using a given constraint can actually be a parameter. 
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could be solved by using different methods, whose complexity differ according to their 
capacity to deal with more or less complex objectives functions & constraints 
(linear/non -linear, deterministic/stochastic, etc.). 

As mentioned before, many different kinds of models are used to study power systems, 
and many terms are used to describe these models, as described in Figure 1. It appears 
that these terms can be divided in three categories, as shown in Figure 2:  

¶ High level model classifications proposed in literature 

¶ Terms related to the way the problems are written/formulated 

¶ Many existing mathematical notions/techniques/concepts 

 

Figure 2: An overview of terms used to describe models and solving techniques ɀ own 
depiction 5 

The following paragraphs give further information about each category, but we can 
already make an important distinction not always made by authors between the 
ÃÏÍÐÌÅØÉÔÙ ÏÆ ÔÈÅ ÐÒÏÂÌÅÍȭÓ ÆÏÒÍÕÌÁÔÉÏÎ, and the complexity of the solving technique used. 
Indeed, a non-linear problem for example can often be reformulated as a linear 
problem, by modifying or removing constraints, or modifying the objective function. 
%ÖÅÎ ÔÈÏÕÇÈ ÔÈÉÓ ȰÒÅÆÏÒÍÕÌÁÔÉÏÎȱ ÉÓ Á ËÅÙ ÓÔÅÐ ÉÎ ÔÈÅ ÍÏÄÅÌÓȟ ÉÔ ÉÓ ÎÏÔ ÁÌ×ÁÙÓ ÄÅÓÃÒÉÂÅÄ 
in detail.  

                                                                                                                                                                            
4 4ÈÉÓ ÍÁÔÈÅÍÁÔÉÃÁÌ ÐÒÏÂÌÅÍ ÉÓ ÇÅÎÅÒÁÌÌÙ ÃÁÌÌÅÄ ÁÎ ȰÏÐÔÉÍÉÓÁÔÉÏÎ ÐÒÏÂÌÅÍȱ 

5 Using classifications from Grünewald [1] , Ventosa [151] , Möst [8] , Connolly [67]  
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2.2.2 Model families  

Many authors propose reviews of power systems models, with different scopes and 
objectives. A short overview of two of these reviews/classifications is proposed here. 

One starting point to classify models can be the system boundary drawn around the 
storage, i.e. the level of detail with which the energy system surrounding the storage 
(grid, power system, entire energy system) is represented. In this sense, Grünewald et 
al. [1] , [2]  propose a very fundamental distinction between engineering and system 
models: 

¶ Engineering models focus on assessing extensively the techno-economic 
performance of one specific technology, in a given system context. Generally, 
these models are used by studies that focus on the control and optimisation of a 
given storage asset. They aim at assessing, in a given context, how the asset 
should be monitored and how profitable it would be. 

¶ System models focus on the behaviour of an entire energy system (be it national, 
European, regional, etc.) and seek feasible and least cost solutions (that bring 
value to the system as a whole) under certain constraints, for example min cost, 
or carbon emission targets. These models aim at providing insights on the 
overall benefits provided by storage, i.e. how storage can help reducing the costs 
of electricity. 

As Grünewald et al. [1]  highlight, neither class of model is generally sufficient to give a 
clear picture to the policy maker ɀ engineering models being very precise, but often 
case specific, and system models being very inclusive, but still unable to adequately 
represent all the constraints. The advantages of the developments of high performance 
computing might be offset by the fact that system models are getting more and more 
complex6. Bearing that distinction in mind, the authors stress the interest of developing 
more system models, focusing on the "system value" of storage. 

2.2.3 Formulating of the problem  

When stating that a model is deterministic/probabilistic, or linear/non-linear, what is 
described is not the way the problem is solved, i.e. how the solution of the optimal 
solution is found, but the way the problem is formulated. As these terms are used in 
ÎÅÁÒÌÙ ÁÌÌ ÍÏÄÅÌÓȭ ÄÅÓÃÒÉÐÔÉÏÎȟ ×Å ÐÒÏÐÏÓÅ ÈÅÒÅ Á ÒÅÍÉÎÄÅÒ ÏÆ ÔÈÅÉÒ ÄÅÆÉÎÉÔÉÏÎȢ  

Linear vs non -linear problems  

Non linearity can appear either in the objective functions or in the constraints. A typical 
class of non-linear problems are modified price-taker models7 in which the effect of a 
dispatch decisions on prices is taken into account, often by a linear relationship 

                                                        
6 Note that not all models are either an engineering or a system model: for example, a model simulating & comparing 
the different options available to integrate distributed energy resources, and face the tension/congestion issues 
(namely, grid reinforcement, selective curtailment, storage, voltage control, etc.) could be considered as a system 
model in that its objective is to find the optimum design to reduce costs, satisfying the operational constraints. But it 
is unlikely that this model will be able to give precise insights at a national level, given the diversity of distribution 
networks ɀ it has to be applied for each existing context, which would therefore classify this model as an engineering 
one. This example highlights the limit of the classification proposed. 

7 A price taker approach uses prices as exogenous inputs, and does not modify them. 
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between power and price making the objective function quadratic in the power, e.g. by 
dena [3] , He et al. [4] , Sioshansi et al. [5] .8  

In the constraints, a non-linearity can appear if a constraint involves, for example, the 
product of two variables (e.g. I < 5 A, U < 220 V, U*I < 1000 AV). An example for this is 
given by Benitez et al. [6]  in a nonlinear constrained optimisation program of an 
electrical grid. In this case, the non-linearity results from the representation of hydro 
generation with the power rating being depending on the volume of water in the 
reservoir. This leads to quadratic constraints in an otherwise linear problem. 

Deterministic vs stoc hastic problems  

As underlined in Wallace and Fleten [7]ȟ ȰÓÔÏÃÈÁÓÔÉÃ ÐÒÏÇÒÁÍÍÉÎÇ ÉÎ ÅÎÅÒÇÙ ÍÏÄÅÌÓ ÉÓ 
not a well-defined topic. [...] Generally, stochastic programming refers to a problem 
class and not to the choice of solution ÐÒÏÃÅÄÕÒÅÓȱȢ 4ÈÅ ÁÕÔÈÏÒÓ ÆÕÒÔÈÅÒ ÍÅÎÔÉÏÎ ÔÈÁÔ 
ȰÁÒÔÉÃÌÅÓ ÔÙÐÉÃÁÌÌÙ ÍÉØ ÄÉÓÃÕÓÓÉÏÎÓ ÏÆ ÍÏÄÅÌÓ ÁÎÄ ÍÅÔÈÏÄÓȱȢ 7Å ÔÈÅÒÅÆÏÒÅ ÔÒÙ ÔÏ ÓÅÐÁÒÁÔÅ 
the two aspects even though they are often deeply related (some solution procedures 
are elaborated to solve one specific problem). 

 

 

Figure 3: From deterministic to stochastic models ɀ based on Möst and Keles [8]  

Stochastic models take into account the fact that the future cannot be perfectly 
predicted, as some factors (e.g. the unplanned outage of a power plant or the deviation 
of actual renewable production from forecasts) are uncontrollable or not fully 
predictable by nature (the evolution of these factors is thus called a stochastic process). 

                                                        
8 Some authors also classify models including discrete variables as non-linear problems - e.g. in a model simulating 
the dispatching of production units by minimising variable costs, integrating start-up costs introduces a non-
continuous variable: producing one more MWh with a given technology can either cost 'x' or 'x+start-up cost', thus 
the objective function therefore becomes non-linear. 

Elaboration on : Möst and Keles, 2010, A survey of stochastic modelling approaches for liberalised markets
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In real life, decisions are not made with a perfect view of the future, and the operator 
has to act according to a pre-defined strategy or policy. The point of stochastic 
modelling is to propose such strategies9, which implies representing stochastic 
processes.  

Therefore, a stochastic modelling approach generally implies 2 steps: first, an 
optimisation is carried to provide strategies at all the future possible states of the 
system; then, a second step consists of applying this strategy to a given scenario 
(decisions/actions at every time step). Deterministic approaches on the other hand 
directly provide decisions, without the need to define a strategy. 

The objective function of a stochastic approach will be: 

ÍÉÎ ɴ ὪὼḳὉὊὼȟ   

Or more generally (to include multi stage problems) 

ÍÉÎ ɴ ὪὼḳὉὊὼȟ   

Where  

 

ὼ ɴ ᴙ Ὥί ὸὬὩ ὺὩὧὸέὶ έὪ ὨὩὧὭίὭέὲ ὺὥὶὭὥὦὰὩί

ɴ   Џ Ὥί ὥ ὺὩὧὸέὶ ὶὩὴὶὩίὩὲὸὭὲὫ ὸὬὩ ὶὥὲὨέά ίὸέὧὬὥίὸὭὧὥίὴὩὧὸί έὪ ὸὬὩ ὴὶέὦὰὩά
Ὂ Ὥί ὸὬὩ έὦὮὩὧὸὭὺὩ ὪόὲὧὸὭέὲ  

 

In other words, the objective is to minimise the expectation of value on the different 
scenarios. ὼ  reflÅÃÔÓ ÔÈÅ ÆÁÃÔ ÔÈÁÔ ÉÎ ÍÕÔÌÉ ÓÔÁÇÅÓ ÐÒÏÂÌÅÍÓȟ ÄÅÃÉÓÉÏÎ ÁÔ ÔÉÍÅ ȰÔ Ѐ Ô0ȱ 
takes into account the uncertainties not only in t, but also in t > t0. 

While the objective function of a deterministic approach will be, for each scenario:  

 ÍÉÎ
 ɴ
Ὂὼȟ  

Where  

 

ὼ ɴ ᴙ Ὥί ὸὬὩ ὺὩὧὸέὶ έὪ ὨὩὧὭίὭέὲ ὺὥὶὭὥὦὰὩί

ɴ   Џ Ὥί ὥ ὺὩὧὸέὶ ὶὩὴὶὩίὩὲὸὭὲὫ ὸὬὩ ὶὥὲὨέά ίὸέὧὬὥίὸὭὧὥίὴὩὧὸί έὪ ὸὬὩ ὴὶέὦὰὩά
Ὂ Ὥί ὸὬὩ έὦὮὩὧὸὭὺὩ ὪόὲὧὸὭέὲ  

 

In other words, the objective is to minimise the objective function for each scenario 
(and then possibly take the expectation, min, max, etc. over all the scenarios). Here, 
ὼ  reflects the fact that decisions are made with a perfect knowledge of the future. 

In order to establish a strategy, scenarios describing possible realisations of a random 
ÐÁÒÁÍÅÔÅÒ ɉʖɊ ÎÅÅÄ ÔÏ ÂÅ ÃÏÎÓÔÒÕÃÔÅÄ ɉÅȢÇȢ ×ÉÎÄ ÆÏÒÅÃÁÓÔÓɊȢ 4ÈÅ ÓÉÍÕÌÁÔÉÏÎ ÏÆ ÒÁÎÄÏÍ 
parameters and the construction of the scenarios is a full part of a stochastic modelling 
approach, as indicated by Möst and Keles [8] , in a survey of stochastic modelling 
ÁÐÐÒÏÁÃÈÅÓ ÆÏÒ ÌÉÂÅÒÁÌÉÓÅÄ ÍÁÒËÅÔÓȢ 4ÈÅ ÁÕÔÈÏÒÓ ÄÉÓÔÉÎÇÕÉÓÈ σ ȰÆÉÅÌÄÓȱ ×ÈÅÒÅ ÓÔÏÃÈÁÓÔÉÃ 
methods are used.  

¶ Stochastic processes for commodity prices 

¶ Scenario generation and reduction 

¶ Stochastic optimising models for investments decisions. 

                                                        
9 Ȱ!ÎÏÔÈÅÒ ÆÁÃÔȟ ÄÅÁÒ ÔÏ ÁÌÌ ÓÔÏÃÈÁÓÔÉÃ ÐÒÏÇÒÁÍÍÅÒÓȟ ÉÓ ÈÉÓ ÐÏÉÎÔÉÎÇ ÏÕÔ ÔÈÁÔ ×ÈÉÌÅ ÄÅÔÅÒÍÉÎÉÓÔÉÃ ÍÕÌÔÉ ÐÅÒÉÏÄ 
ÏÐÔÉÍÉÚÁÔÉÏÎ ÙÉÅÌÄÓ ÄÅÃÉÓÉÏÎÓ ÆÏÒ ÁÌÌ ÐÅÒÉÏÄÓȟ Á ÓÔÏÃÈÁÓÔÉÃ ÁÐÐÒÏÁÃÈ ÏÎÌÙ ÙÉÅÌÄÓ ÐÏÌÉÃÉÅÓ ÏÒ ÓÔÒÁÔÅÇÉÅÓȱ [7] . 
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In particular, they describe how these models should interact in a coherent modelling 
approach, as depicted in Figure 3. Financial models and/or econometric models can be 
used to model uncertainties, then scenarios can be developed (prices paths, wind 
forecast, etc.), to be fed in fundamental models, either deterministic or stochastic10. Möst 
and Keles note that it is possible to use in parallel a deterministic model on many 
scenarios; this is also a way to take into account the fact that the future is not perfectly 
known, and some authors classify this kind of approach as "stochastic". 

The advantage of sÔÏÃÈÁÓÔÉÃ ÁÐÐÒÏÁÃÈÅÓ ÉÓ ÔÈÁÔ ÔÈÅÓÅ ÁÌÌÏ× ÑÕÁÎÔÉÆÙÉÎÇ ÔÈÅ ȰÖÁÌÕÅ ÏÆ 
ÉÎÆÏÒÍÁÔÉÏÎȱȟ ÂÙ ÃÏÍÐÁÒÉÎÇ ÒÅÓÕÌÔÓ ÏÂÔÁÉÎÅÄ ×ÉÔÈ ÍÏÒÅ ÏÒ ÌÅÓÓ ÕÎÃÅÒÔÁÉÎÔÙ ɉÆÏÒ 
example, different qualities of wind prediction). However, the accuracy is not 
guaranteed since it depends on the choice and quality of the scenarios elaborated.  

2.2.4 Solving techniques  

When it comes to determine the behaviour of a system given a particular set of input 
ÖÁÒÉÁÂÌÅÓȟ ÓÏÍÅ ÆÏÒÍ ÏÆ ÏÐÔÉÍÉÓÁÔÉÏÎ ×ÉÌÌ ÇÅÎÅÒÁÌÌÙ ÂÅ ÐÅÒÆÏÒÍÅÄȟ ÅØÃÅÐÔ ÆÏÒ ȰÓÉÍÕÌÁÔÉÏÎ 
ÍÏÄÅÌÓȱ ÉÎ which algorithms are used. 

One definition [9]  ÄÅÓÃÒÉÂÅÓ ÔÈÅ ÏÐÔÉÍÉÓÁÔÉÏÎ ÐÒÏÃÅÓÓ ÁÓ ÆÏÌÌÏ×Óȡ Ȱ-ÁÔÈÅÍÁÔÉÃÁÌ 
optimisation is the branch of computational science that seeks to answer the question 
'What is best?' for problems in which the quality of any answer can be expressed as a 
numerical value. Such problems arise in all areas of business, physical, chemical and 
biological sciences, engineering, architecture, economics, and management. The range 
of techniques available to solve them is nearly as wide". 

For stochastic models, the challenge lies in the number of possible combinations. The 
mathematical problem resulting the model formulation can therefore be intractable ɀ 
hence, methods such as dynamic programming and stochastic optimisation are used, as 
described in Figure 4, that gives an overview of some of the most widely used 
mathematical techniques to solve stochastic optimisation problems based on Foley et al. 
[10] . 

The term Ȱstochastic programmingȱ ÒÅÆÅÒÓ ÔÏ Á ÆÁÍÉÌÙ ÏÆ ÓÔÏÃÈÁÓÔÉÃ ÁÐÐÒÏÁÃÈÅÓȟ ÕÓÅÄ 
×ÉÔÈ ÃÏÍÐÕÔÅÒÓ ɉȰÐÒÏÇÒÁÍÍÉÎÇȱɊȢ 4ÈÅ Ô×Ï ÍÁÉÎ ÔÅÃÈÎÉÑÕÅÓ ÕÓÅÄ ÁÒÅ Ȱdynamic 
programmingȱ ÁÎÄ ȰÓÔÏÃÈÁÓÔÉÃ ÏÐÔÉÍÉÓÁÔÉÏÎȱ ɉÁÌÓÏ ÎÁÍÅÄ ȰÓÔÏÃÈÁÓÔÉÃ ÐÒÏÇÒÁÍÍÉÎÇȱȟ ÏÒ 
ȰÍÕÌÔÉ-stage stochastiÃ ÐÒÏÇÒÁÍÍÉÎÇȱɊȢ 7Å ÄÏ ÎÏÔ ÐÒÏÖÉÄÅ Á ÄÅÔÁÉÌÅÄ ÐÒÅÓÅÎÔÁÔÉÏÎ ÏÆ 
these techniques. These two approaches each have pros and cons, linked to the 
computational requirements needed (calculation time, memory needed). The important 
parameters include the length of the optimisation window (number of time steps) and 
the number of stochastic parameters (prices, wind prediction, load, etc.)11. The 
interested reader can refer to Kleywegt and Shapiro 2000 [11] , Wallace and Fleten [7]  
for more detail on these methods. 

Finally, the resulting mathematic problem can be solved with techniques such as linear 
programming (generally with a solver) or alternative approaches such as genetic 
algorithms. 

                                                        
10 See Figure 6 for a depiction of deterministic fundamental model, and Figure 7 for a depiction of stochastic 
fundamental models.  

11 Haesen [31]  and Mokrian and Stephen [30]  provide good examples on how these parameters impact the results. 
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Figure 4: An example of mathematical techniques associated with one type of model 
(optimisation system models) ɀ based on Foley et al. [10]  

In the two following paragraphs, we use the classification of models in engineering and 
system families. While the objective functions, constraints and parameters of the 
models used for those two categories of studies are different, the solving techniques 
used can be similar. 

2.3 Engineering models  

These models focus on assessing the techno-economic performance of one specific 
technology, in a given system context. This corresponds to the view of a storage 
producer trying to maximise its gains.  

2.3.1 The price taker approach with perfect forecast  

This is the most common method; it means that the possible revenues for storage are 
studied, without taking into account the impact of storage on the market. Marginal 
analysis can be performed with one or many services (spot arbitrage, reserve markets, 
balancing, wind firming, etc.).  

The price taker approach involves two strong assumptions: 

¶ 4ÈÅ ÓÔÏÒÁÇÅȭÓ ÓÉÚÅ ÉÓ ÎÏÔ ÂÉÇ ÅÎÏÕÇÈ ÔÏ ÍÏÄÉÆÙ ÍÁÒËÅÔ ÐÒÉÃÅÓ 

¶ A perfect price forecast window, more or less extended according to the study 

The authors usually justify the first hypothesis by the fact that they do not study a 
massive or very important penetration of storage in power systems. E.g. Ekman [12]  
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ÈÉÇÈÌÉÇÈÔÓ Ȱthat this simple analysis does not take into account the effect that an 
electricity storage system would have on the power price, i.e. it is assumed that the 
installation is marginal and does not exert any influence on the price levelȱȢ 

Some authors take price effects into account with the help of feedback functions, in 
particular if the object of study is the benefit of a particular storage for power prices 
(e.g. dena [3] , Sioshansi et al. [13] ) or the strategic behaviour of market participants 
(Sioshansi. [14]  or Schill et al. [15] ). So far, only a few authors have studied the critical 
storage size (compared to that of the system) that would forbid any marginal analysis. 
He et al. [16] , perform a numerical analysis of arbitrage using real market bids data of 
the French day-ahead market in 2009 thus taking the market clearing explicitly into 
account12. 

The second hypothesis (perfect foresight) has been given more attention in literature, 
and its impact is well known. E.g. He et al. [17]  ÓÔÁÔÅ ÔÈÁÔ ȰÔhe main limit of this kind of 
valorisation is the fact that the model assumes perfect foresight of market price. The 
global profit obtained from the model is therefore overestimated as compared to what can 
be captured in realityȱȢ 3ÅÖÅÒÁÌ ÁÕÔÈÏÒÓ ÐÅÒÆÏÒÍ ÓÅÎÓÉÔÉÖÉÔÙ ÁÎÁÌÙÓÉÓȡ "ÁÒÔÈÕÓÔ ÅÔ ÁÌȢ 
[18] 13, Sioshansi et al. [13] , Drury et al. [19] , Connolly et al. [20] by reducing the perfect 
forecast window, or using back-casting techniques i.e. defining a dispatch strategy with 
historical data, and applying it to the future. These analyses, still based on deterministic 
approaches, indicate that around 80 % of the value with long term perfect forecast 
could realistically be gained with real operational strategies, by using more or less 
complex methods. 

Perfect foresight would however be applicable if a storage would not be dispatched by 
traders. He et al. [16]  propose a coupling of the electricity storage with electricity 
markets, i.e. "letting the market operator perform a centralized optimization to decide the 
optimal allocation of storage resources over the time and among different actorsȱ14. This 
however implies a strong hypothesis on the future of storage regulation. 

In the current environment, the perfect market foresight could be challenged by the 
increasing production from renewable energy sources leading to an increasing volatility 
of power prices. Some authors explicitly address this increasing volatility by studying 
the provision of reserve power along with arbitrage, as for example Deb et al. [21]  
Walawalkar et al. [22] , Fraunhofer [23] , Drury et al. [19]  and He et al. [17] . The main 
limit of these analyses is that they do not fully take into account the uncertain 
interactions between providing energy and ancillary services as remarked by Xi et al. 
[24] , which means that they tend to overestimate the value of storage.  

Some authors compare the suitability of different technologies or combinations thereof. 
PNNL [25] , Kazempour et al. [26]  propose a comparison of PHPs and different batteries. 
Drury et al. [19]  and Fraunhofer [23]  compare the performances of diabatic and 
adiabatic CAES. Most of these studies do not take grid tariffs into account, even though it 

                                                        
12 The approach requires the availability of the power market bidding curves for each time step, or sufficient data to 
replicate these curves (e.g. size and variable costs of all the biding units). 

13 ȰIt was assumed in this paper that the arbitrage prices were known 24 h in advance in a rolling window and the 
ÂÁÌÁÎÃÉÎÇ ÐÒÉÃÅÓ ËÎÏ×Î ÁÔ ÍÁÒËÅÔ ÃÌÏÓÕÒÅȢ 4ÈÅÓÅ ÁÕÔÈÏÒÓȭ ÐÒÉÏÒ ÅØÐÅÒÉÅÎÃÅ ÈÁÓ ÓÈÏ×Î ÔÈÁÔ ÉÎ ÃÅÒÔÁÉÎ ÍÁÒËÅÔ conditions, 
up to 80% of the full-knowledge value can be obtained using primitive statistical price forecasting techniques.ȱ 

14 As for market coupling for interconnection capacities 
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presents little modelling complexity and it can have a strong impact on storage 
profitability, as highlighted by dena [27]  or Nekrassov et al. [28] . 

It should be noted though that only a few studies are based on extensive datasets (as 
discussed in the chapter on storage profitability of this report), even though these 
ÍÏÄÅÌÓȭ ÓÉÍÐÌÉÃÉÔÙ ÐÏÓÅs no hurdle.  

In conclusion, deterministic & price takers models are still used for an important range 
of studies, due to their simplicity of use and design. Such approaches are also used in 
investment decision processes as the AEEG, the Italian regulator, uses an approach close 
to a price taker with perfect forecast in order to rank storage pilot projects [29] . 

2.3.2 The price taker approach without perfect forecast (stochastic & 
dynamic modelling)  

In recent years, a number of authors worked on non-deterministic approaches, or 
scenario based deterministic approaches. The objective is to propose realistic 
dispatching strategies without a perfect forecast assumption, i.e. facing uncertainty on 
the price levels, and also potentially on other parameters such as wind forecasts, gas 
prices, demand levels, etc. We separate here the studies dealing with hybrid system 
(wind + storage, often with transmission or other quite specific constraints) from stand-
alone storage capturing value on different markets.  

The driver for developing such models, mentioned by all the authors thereafter cited, is 
that the perfect forecast approach (or deterministic approach) might not be appropriate 
in increasingly volatile markets. Thus authors propose approaches based on stochastic 
programming, (stochastic) dynamic programming, Monte Carlo simulation, etc.  

It should be noted however that to our knowledge, and with regard to the articles 
reviewed here, few authors propose a clear view of how their models15 could help 
stakeholders improve their valuations of storage. So far, most of the studies proposing 
actual results (see the profitability chapter) are based on deterministic methods. 
Therefore, it would be interesting to provide answers to questions such as: 

¶ What are the benefits of increasing the models complexity? How different are the 
results than with simpler methods? 

¶ Are simpler methods, such as the one described above, still relevant? Can they be 
improved with a better knowledge of their limits thanks to punctual more 
complex modelling? 

¶ Can the model be used on large sets of data? Or can it be used only on restricted 
cases, in order to highlight one specific aspect? 

It seems difficult, to provide answers to these questions. We will therefore limit our 
present analysis to an introduction to some of the approaches used. 

Mokrian and Stephen [30]  propose a series of models aiming at maximising the storage 
profits on intraday arbitrage. The authors first state that the existing approacheÓ Ȱrely 
on deterministic prices ɀ Where the volatility is specifically mentioned, the models once 
again optimize over a given historical price profile [...]. None of them model what the plant 
would do in an actual market setting using forward looking, dynamic strategiesȱȢ 

                                                        
15 Some of which are more proofs of concept than re-usable models. 
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4ÈÅÒÅÆÏÒÅȟ ÔÈÅÙ ÐÒÏÐÏÓÅ ÁÎÄ ÃÏÍÐÁÒÅ ÔÈÒÅÅ ÄÉÆÆÅÒÅÎÔ ÁÐÐÒÏÁÃÈÅÓȡ Á ÆÉÒÓÔ ȰÌÉÎÅÁÒ 
ÐÒÏÇÒÁÍÍÉÎÇȱ ÍÏÄÅÌ ÉÓ ÉÎÔÒÏÄÕÃÅÄȟ ÔÈÅÎ Á ȰÄÙÎÁÍÉÃ ÐÒÏÇÒÁÍÍÉÎÇ ÍÏÄÅÌȱ ɉ$0Ɋ ÁÎÄ 
ÆÉÎÁÌÌÙ Á ȰÓÔÏÃÈÁÓÔÉÃ ÐÒÏÇÒÁÍÍÉÎÇ ÍÏÄÅÌȱ ɉ30ɊȢ 4ÈÅ ÒÅÓÕÌÔÓ ÏÆ ÔÈÅ ÔÈÒÅÅ ÍÏÄÅÌÓ ÔÏ 
estimate the revenues of storage on an intra-day market are then compared. Based on 
this research, Haesen et al. [31]  propose a summary of the pros and cons of DP and SP 
solving techniques: 

¶ Ȱ30 ÄÉÖÉÄÅÓ ÔÈÅ ÔÉÍÅ ÈÏÒÉÚÏÎ ÉÎ ÓÅÖÅral stages. At each stage operation is optimized 
based on several price expectation trends and the expected optimal value for future 
time stages, introducing recourse in the problem formulation (a scenario tree). The 
more stages are introduced, the more profit can be captured at the cost of higher 
computational requirements.  

¶ DP on the other hand has no limitation on the number of stages, but does need to 
limit the number of operation possibilities (actions) at each stage to overcome the 
ȬÃÕÒÓÅ ÏÆ ÄÉÍÅÎÓÉÏÎÁÌÉÔÙȭ ɍχɎȢ ! ÂÁÓÉÃ ÐÒÅÒÅÑÕÉÓÉÔÅ ÆÏÒ $0 ÏÐÔÉÍÁÌÉÔÙ ÉÓ ÔÈÁÔ 
optimization of future actions is not depending on information of the past, i.e. 
choosing the optimal operation is purely forward looking16Ȣ ɍȣɎ )Ô ÍÁÙ ÎÏÔ ÂÅ 
compatible with power exchange rules in which day-ÁÈÅÁÄ ÂÉÄÓ ÁÒÅ ÐÌÁÃÅÄȢȱ 

The authors do not conclude on the respective merits of DP and SP approaches. The 
results for both methods are indeed different than those obtained with a LP approach 
with expected prices, and the differences seem to vary in the 3 different price paths 
simulated. It would be interesting to have quantification of these variations, and of how 
they could influence investment decisions. An important limitation of this work is that it 
only concerns intraday arbitrage, as decisions need to be taken during the day. As of 
today however, the most liquid and relevant markets are still the day-ahead markets. 

In their conclusion, the authors point out several practical results that contradict other 
previous studies (with regard to storage capacity (MWh), storage efficiency, and time 
horizon for the optimisation). However, some further work would be interesting to fully 
assess the interest of their research, and how it could be further used17.  

Xi and Sioshansi [24]  note that the existing literature did not address well enough three 
issues:  

¶ Most studies do not co-optimise multiple storage uses. Multi stream valuation is 
often proposed, but through the use of strong hypotheses without real co-
optimisation of the revenues,  

¶ The effects of price and system uncertainty are often neglected in storage 
analyses, and 

¶ Most storage analyses focus on utility scale storage, even though smaller scale 
storage is becoming an attractive option.  

Therefore, the authors propose Á ȰÓÔÏÃÈÁÓÔÉÃ ÄÙÎÁÍÉÃ ÐÒÏÇÒÁÍÍÉÎÇ ÍÏÄÅÌ ÆÏÒ ÃÏ-
ÏÐÔÉÍÉÓÁÔÉÏÎ ÏÆ ÄÉÓÔÒÉÂÕÔÅÄ ÅÎÅÒÇÙ ÓÔÏÒÁÇÅȱȢ 4ÈÅÉÒ ÐÁÐÅÒ [24]  proposes a very clear 

                                                        
16 In other words, prices can only be simulated through a Markov process, i.e. futures prices estimates will not use the 
prices seen during the previous hour, but only the hour when the new prediction is made, which is an important 
limitation.  

17 The authors also mention the fact that their framework is amenable to multiple revenues (but no further published 
work is available to our knowledge) 
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presentation of the model18 and of the assumptions used, which could allow replicating 
their approach. The problem is solved in two stages19. A use case combining up to four 
services (arbitrage, regulation, distribution relief and back-up) is then studied, using 
2009 PJM data over one week. The main conclusion of the authors concerns the 
occurrence of trade-off between services when they are jointly optimised. It is not said 
however if this modelling approach can be used to study multiple markets over a larger 
time scale, i.e. if their approach is applicable to larger use cases. 

Keles et al. [32]  ȟ ×ÈÉÌÅ ÁÌÓÏ ÓÔÁÔÉÎÇ ÔÈÁÔ ȰÎÏÎÅ ÏÆ ÔÈÅ ɍÐÒÅÖÉÏÕÓɎ ÁÐÐÒÏÁÃÈÅÓ ÔÁËÅÓ ÉÎÔÏ 
ÁÃÃÏÕÎÔ ÔÈÅ ÐÒÉÃÅ ÄÙÎÁÍÉÃÓ ÏÆ Á ÌÏÎÇ ÐÅÒÉÏÄ ÁÎÄ ÔÈÅÉÒ ÓÔÏÃÈÁÓÔÉÃ ÖÏÌÁÔÉÌÉÔÙȱ ÕÓÅ Á 
different modelling approach. It consists of a deterministic optimisation model, and on a 
financial mathematical model : the core of the model is still based on an optimisation 
problem with a perfect price forecast, but the optimisation is done on 1000 prices paths 
(Monte Carlo simulation), generated via a stochastic process. Keles et al. [32]  conclude 
by stressing the fact that gas and CO2 prices should also be modelled using stochastic 
processes. Also, the authors note that ȰÏÎÇÏÉÎÇ ÁÎÄ ÆÕÒÔÈÅÒ ÆÕÔÕÒÅ ×ÏÒË ÓÈÏÕÌÄ 
concentrate on the formulation of a stochastic optimization model instead of the time-
consuming Monte Carlo simulation with 1000 optimizing runs, which takes nearly eight 
hours for this single plant evaluation [...]. A scenario tree can be generated out of the 1000 
price paths and incorporated into a stochastic optimization model or stochastic dynamic 
programming model. In this case it is not necessary to run the optimization model 
thousands of times, and it can be run with a smaller dimension due to the reduced 
stochastic treeȱȢ 

In a similar approach, Grünewald [2]  proposes an analysis over 6 years, also with non-
historical prices, as in Keles et al. [32] . In this case, the price paths are constructed with 
a model providing hourly electricity prices, with a simplified representation of a 
competitive electricity market20. On a second step, a deterministic optimisation problem 
is used to perform arbitrage. With this method, Grünewald then performs several 
interesting analyses, as the impact of more wind production for storage, or on the 
interest of a capacity market mechanism. The two last examples indicate that this 
method could be extended to the study of large use cases (though with high 
computational time). 

Finally, Qin et al. [33]  note that the control and optimisation of storage in a spot market 
ÃÏÕÌÄ ÉÎ ÔÈÅÏÒÙ ÂÅ ÁÓÓÅÓÓÅÄ ÔÈÒÏÕÇÈ Ȱnaive Monte Carlo approach, [...] but that the 
ÉÍÐÏÒÔÁÎÔ ÎÕÍÂÅÒ ÏÆ ÓÃÅÎÁÒÉÏÓ ÎÅÅÄÅÄ ×ÏÕÌÄ ÉÍÐÌÙ ÖÅÒÙ ÈÉÇÈ ÃÏÍÐÕÔÁÔÉÏÎÁÌ ÔÉÍÅȱ as 
already stressed before. Therefore, the authors review other numerical approaches 
such as scenario selection, approximate dynamic programming, and parametric linear 
programming. Then an analytical solution is proposed for the storage operation 
problem ɀ this work seems interesting and innovative, as the optimal control rule 
ÃÏÎÓÉÓÔ ÏÎÌÙ Ȱin comparing the current price with a pre calculated threshold value to 
ÄÅÃÉÄÅ ÈÏ× ÔÏ ÂÕÙ ÁÎÄ ÔÏ ÓÅÌÌȱȢ More work is needed on such approaches, as analytical 

                                                        
18 Parameters, state variables, decision (action) variables, exogenous variables, state-transition function, constraints 
and objective function. 

19 First, discretization of exogenous and state variables allows solving the discretized SDP using backward induction, 
then a mixed-integer program in which the value of the true SDP is approximated 

20 The model uses rather detailed data, for the demand profiles and renewable production) ɀ according to the 
demand addressed to the thermal parc, prices are high or low (if wind production increases, prices are more volatile). 
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approaches generally require strong hypotheses (e.g. uncertainties can be modelled 
through Gaussian laws). 

In conclusion, Monte Carlo approaches are used by modellers as a pragmatic 
intermediary between more complex mathematical models, and deterministic 
approaches on historical prices  

2.3.3 Modelling of hybrid storage systems  

Another sub category of models is used in studies proposing strategies to optimise the 
dispatch of a storage jointly with an intermittent energy resource, such as wind or solar. 
These models are often extensions of the price taker approaches described above, 
generally with one more stochastic variable (such as wind). The attention of these 
studies often resides in either the wind forecasting technique, or in the consideration of 
specific constraints (limited cable size, local load to satisfy, etc.). 

A few typical examples of such papers are Korpas et al. 2003 [34] , Howell et al. 2009 
[35] , Arsie et at [36] , Barton and Infield [37] , Deb [21] , EPRI [38] , Garcia Gonzales [39] , 
Hessami [40] . Very specific constraints are also studied by Denholm and Sioshansi [41]  
(interest of storage for limiting the size of a cable between a wind farm and the grid, and 
analysis of the trade-off between fewer arbitrage possibilities and fewer grid cost) and 
by Loisel et al. [42]  [43] . 

2.3.4 Services mutualisation  

As described in Chapter 3 of this report, providing only one service with a storage 
device can be unprofitable in most market situations. A number of authors therefore 
study how to deliver more than one service in order to construct profitable business 
models for storage. This is challenging from both the technical point of view (how to 
dispatch storage according to different objective functions?) and from the economical 
point of view, as mutualisation services generally imply a trade-off, and the investor 
needs to optimise the storage operation. Also, regulatory issues might need to be 
addressed the storage is to deliver services to different segments of the unbundled 
energy system as described in Chapter 4 of this report. 

For bulk storage, typical combinations studied are arbitrage combined with reserve 
power (Drury et al. [19] , Fraunhofer [23] , Walawalkar [22] , Sioshansi et al. [5] ) and 
arbitrage combined with congestion management (e.g. Black and Strbac [44] , Denholm 
et al. [41] , Loisel et al. [42] ). An exhaustive list of services including some possible 
combinations is identified by EPRI [38]  and SANDIA [45]. 

Even more combinations seem possible for distributed storage. Delille et al. [46]  [47]  
systematically derive a matrix (the dimensions being the location of the storage in the 
grid and the services) of possible use cases. A list of more than twenty services is 
established, along with the potential storage technologies suited to deliver the services 
and a list of the places where a storage device could be located on distribution grids. 
Combining lists and matrices allows proposing possible services combinations for a 
given technology at a given place. This work focused mainly on distribution 
applications, but could be expanded to the whole power system. The applications are 
not valued in this work, but the matrices can be used to rank use cases to model. 

Loevenbruck [48]  studies the effect of competitive requests on a storage device. Two 
sets of services are assessed: (i) voltage smoothing, investment deferral and arbitrage, 
(ii) primary frequency regulation, grid investment deferral and arbitrage as another. 
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The interest of this research is that the values obtained with the different services are 
not calculated separately: one service is prioritised, and the others are provided taking 
into account one more constraint (the use of storage for the main service). 

He et al. [4]  propose a novel business model for aggregating the values of electricity 
storage, through a system of three successive auctions that allow different actors to use 
storage, with a given profile. The model itself therefore consists of three sequential 
optimisation problems, each integrating as constraints the utilisation curve proposed by 
the formerly accepted auctions. It uses a simple price taker approach for each of the 
auctions thus the auctions themselves are not modelled21. In another paper, He et al. 
[17]  also focus on services mutualisation, with a multi-stream value assessment on the 
French energy market ɀ the three services provided concern three different time 
horizons (year ahead, day ahead and intraday), which also allows to perform three 
successive optimisation problems. This work could be compared with other models 
using a co-optimisation of the services, instead of a sequential process. 

2.4 System models  

System studies usually aim at finding a least cost solution for the supply of energy 
services under a number of constraints which could be policies (e.g. RES-E targets, 
climate goals, the possibility of using nuclear energy) or infrastructure limitations. The 
system benefits are determined by comparing model sensitivities with different storage 
ÐÅÎÅÔÒÁÔÉÏÎÓȢ 3ÙÓÔÅÍ ÍÏÄÅÌÓ ÔÙÐÉÃÁÌÌÙ ÄÏ ÎÏÔ ÁÉÍ ÁÔ ÍÏÄÅÌÌÉÎÇ ÁÎ ÉÎÄÉÖÉÄÕÁÌ ÁÃÔÏÒȭÓ 
behaviour22. 

A number of factors are exogenous to a system model such as demand, commodity 
prices; possibly those exogenous variables are themselves the output of other models. 
The power generation portfolio might be either exogenously given such as assumed by 
Connolly [20]  for the Irish system or result from an optimisation model (e.g. the studies 
by dena on transport grids [49]  and on RES Integration [50] , Strbac et al. [51] ). The 
regional scope varies between one country, larger regions (e.g. 2050 Roadmap [52] , 
EURELECTRIC PowerChoices [53] ) or the world energy system (e.g. IEA World Energy 
Outlook [54]  23).  

Thus, system studies significantly vary in the sector boundaries, in their objectives and 
in their structure. The following cases can be distinguished: 

¶ Energy system models (modelling the energy system ɀ TIMES models often fall in 
this category) 

¶ Market models (as defined by ENTSO-E [55] ) ɀ these correspond to models 
focusing on the demandɀsupply-equilibrium, and generally use simplified 
ÁÓÓÕÍÐÔÉÏÎÓ ÆÏÒ ÒÅÐÒÅÓÅÎÔÉÎÇ ÔÈÅ ÇÒÉÄ ɉÏÆÔÅÎ ȰÓÉÎÇÌÅ ÎÏÄÅȱ ÒÅÐÒÅÓÅÎÔÁÔÉÏÎÓɊ 

¶ Network models (as defined by ENTSO-E [55]  ɀ these correspond to models 
focusing on networks management, and generally focusing on a restricted 
number of time steps  

                                                        
21 This could be subject to further research, 

22 They assume that if there is a market, then there is perfect competition, and that therefore actors will behave in the 
way that their interest brings a benefit to the system 

23 As none of the widely known regional system studies provide sufficient details on their respective modelling of 
storage, they are not further discussed within this report. 
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¶  Other system approaches (distribution network studies, islanded systems) 

The boundary between market and network models is not always clear. Ideally, a 
ȰÐÏ×ÅÒ ÓÙÓÔÅÍ ÍÏÄÅÌȱ ÓÈÏÕÌÄ ÂÅ ÂÏÔÈ Á ÍÁÒËÅÔ ÁÎÄ Á ÎÅÔ×ÏÒË ÍÏÄÅÌȟ  ÁÎÄ ÓÏÍÅ ÓÔÕÄÉÅÓ 
give insights on both the generation and networks needs with a single model, as for 
example Strbac et al. 2012 [51] , VDE 2012 [56] . 

2.4.1 Modelling storage in whole  energy systems 

Energy system models are typically used for studying national, regional or global energy 
policy options. They represent a country's or region's entire energy system including 
power generation, transport, industry and heating, possibly over longer time periods 
including the decommissioning and replacement of assets.  

Figure 5 provides a schematic illustration of what an energy system model can be, and 
of the solving method of these models (generally, a deterministic optimisation is 
carried, for one or several scenarios, through the help of mixed integer linear 
programming). 

 

Figure 5 : Schematic structure of an energy model  

In the context of energy storage, these approaches allow studying cross sector impacts 
such as between electricity generation and heat (e.g. thermal storage heat pumps) or 
mobility (E-vehicles). However, so far, these tools include little possibility to model 
storage.  

The key limiting factor is linked to the aggregated representation of the electrical power 
system, without an hourly time step resolution. For example, the TIMES PanEU model 
(Universität Stuttgart [57] ) uses 12 time slices per year (4 seasonal, 3 day levels) - the 
model described by Remme 2006 [58]  contains 16 time steps (4 seasonal, two week and 
two day level, see. Figure 6 left). 

In practice, in TIMES models, for each time slice, three inputs can be used, as highlighted 
in Figure 6 (right) extracted from [58]  : an average load per time slice (giving a vision of 
the energy demand in GWh per time slice), a peak load (vision of the demand in GW) 
and possibly a secure capacity (also giving a vision of the demand in GW). Therefore, it 
is possible to propose approaches taking into account the impact of storage, by 
ÍÏÄÉÆÙÉÎÇ ÓÁÙ ÔÈÅ ÄÁÔÁ ȰÐÅÁË ÌÏÁÄȱ ÏÒ ȰÓÅÃÕÒÅ ÃÁÐÁÃÉÔÙȱ ÆÏÒ ÅÁÃÈ ÔÉÍÅ ÓÌÉÃÅȢ 4ÈÉÓ ÉÍÐÌÉÅÓ 

Available technologies 

characteristics
- List of tech for converting energy to 
services or other energy carrier (power 

plants, heaters, boilers, motors, etc..)
- Efficiency, ranges, etc.
- Investment costs

Solving technique most commonly used : 

(Mixed Integer) linear programming

RES potential& costs
- Efficiency, ranges, etc.

- Capacity factor

Demand by energy service
- Heating, industry, lights, IT, etc.

Cost and available 

resources of commodities
- Coal, gas, oil, etc.

Constraints
- CO2 levels 

- Other constraints

+ Investment s 
+ Costs during construction time

+ Variable & fix operating costs 
+ Decommissioning costs

+ Other (taxes, etc.)
- Subsidies, etc.

System cost
- Including fixed and variable costs

Investments in conventional 

capacity
- Vision of investments over their entire life 
time

CO2 price
- Linked to the CO2 constraint

RES expansion
- By technology

- By country

Imports & exports 

Perfect forecast (i.e. deterministic approach)
T = time horizon = ~10-40 years

t = time slice = ~ 10-20 per year
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ÕÓÉÎÇ ÓÔÒÏÎÇ ÁÓÓÕÍÐÔÉÏÎÓ ÄÅÆÉÎÅÄ ÂÅÆÏÒÅÈÁÎÄȟ ÁÎÄ ÉÓ ÔÈÅ ÍÁÉÎ ÌÉÍÉÔÁÔÉÏÎ ÏÆ ȰÅÎÅÒÇÙ 
ÍÏÄÅÌÓȱ ×ÈÅÎ ÓÔÕÄÙÉÎÇ ÓÔÏÒÁÇÅȟ ÁÓ ÐÏÉÎÔÅÄ out by Grünewald [1] 24. 

 

Figure 6 : Illustration of the time resolution of a Times model ɀ figures extracted from 
[58]  

Of the studies reviewed, only Connolly [20]  uses an energy system model, however 
without fully modelling the non-electricity sectors.  

2.4.2 Market models  

Market models aim at optimising parts or the whole of the power generation value chain 
i.e. power generation, trade transmission, distribution and possibly end use of 
electricity. 

Models for generation scheduling and power flow can be coupled including storage in 
one or several value chain steps, but the objective of these models is not to provide 
detailed analyses of the network (see next section). Thus, the level of detail for a power 
flow calculation varies between studies, from a few regions with some interconnection 
capacity as used by Strbac et al. [51]  (this work also includes a simplified representation 
of the distribution level) to a detailed node by node grid flow calculation, e.g. by VDE 
[56] . On the distribution and end use level, power flows and storage dispatch are 
usually modelled making assumptions of some "average region" rather than for every 
node (dena 2012 [59] , Strbac 2012 [51] ) and often analyse only one snapshot (peak 
demand or peak day). The "downstream" benefits of storage thus always represent 
some aggregated value for e.g. a representative customer while the "upstream" benefits 
can be quantified for a particular asset as e.g. in [3] .  

These models can be very complex, non-linear and non-continuous, according to the 
constraints that are taken into account. The number of variables can increase rapidly, 
leading to high computational time, often requiring some HPC25 capacity, particularly in 
stochastic approaches using a high number of scenarios to represent the uncertainty of 
wind, load, outages, etc. The amount of data needed is also an important challenge. 

                                                        
24 ȰSystem models, such as MARKAL, Energy Technologies Institute (ETI) ESME model or the DECC2050 accounting framework, do 
attempt to include storage. However, they fail to represent storage adequately due to their lack of temporal resolution or limited ability 
to capture balancing requirements with respect to alternative balancing optionsȱ. In other words, they do not represent the 
contribution of storage to short term flexibility (intra -day and intra-hourly balancing). 

25 High Performance Computing 
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Thus, not many studies follow an approach consisting of representing large 
interconnected systems, from technical constraints of the power plants to the 
consumption, and including some form of storage. 

Figure 7 proposes an example of how a power system model can be structured. The grid 
representation is not shown explicitly here, as it can vary from one model to another. 
Also, investments (generation & network) are not endogenously modelled in the 
example, as this feature is not encountered in all models. Two main differences 
compared with the energy system models previously introduced can appear.  

Firstly, power system models can include a form of stochastic modelling ɀ as explained 
in chapter 2.2.3. This implies using scenarios (e.g. based on historical production 
profiles), and then elaborating a strategy to face the uncertainties of each scenario, as 
indicated below in ÔÈÅ ÓÔÅÐ ρ ȰÏÐÔÉÍÉÓÁÔÉÏÎȱ ɉÔÈÕÓ ÔÈÅ ÏÂÊÅÃÔÉÖÅ ÆÕÎÃÔÉÏÎ ÉÓ ÔÏ ÍÉÎÉÍÉÓÅ 
the system costs expectation for all scenarios)26. The second step of the model generally 
consists of a well-known linear optimisation, more or less complex according to the 
constraints modelled. 

Secondly, the time resolution is much higher, hourly or lower. This allows studying 
properly the variations of load and non-dispatchable production. 

 

Figure 7 : Schematic structure of a power system model (example)  

The studies using such models can have two objectives: assessing real project, or 
analysing the implication of future changes on the system (ex: more renewable 
production). The following paragraphs present each aspect more into detail. 

                                                        
26 )Î ÐÒÁÃÔÉÃÅȟ ȰÅÌÁÂÏÒÁÔÉÎÇ Á ÓÔÒÁÔÅÇÙȱ ÇÅÎÅÒÁÌÌÙ ÃÏÒÒÅÓÐÏÎÄÓ ÔÏ ȰÃÁÌÃÕÌÁÔÉÎÇ ×ÁÔÅÒ ÖÁÌÕÅÓȱȢ 0ĘÙÒÙ [153]  follows a two-
step approach: a first model (BID) calculates water values while a second one (Zephir) realises the dispatch. The 
SDDP [154]  model is used to represent systems with a large number of hydro plants (using stochastic dual dynamic 
programming). Another example is the continental model developed by EDF [62] . 

Possible solving technique :

Dynamic Stochastic 

Programming

Solving technique:  

Linear programming (mixed 

integer, quadratic, etc.)

Thermal units
- List of units

- Efficiency, ranges, etc.

Non dispatchable 

Production
- Production profiles for 
wind, PV, run of river, etc.

Load 
- Profiles per scenario

Cost of commodities
- Coal, gas, oil, etc.

CO2 cost

Hydro production
- Inflows per scenario

System cost
-Including fixed and 

variable costs

Hourly dispatch

Imports & exports 

Loss of load

Units revenues 

+ Variable & fix operating costs 
+ Failure cost
- Subsidies, etc.

T = time horizon = ~1 year
t = time slice = ~ 10-100 p.y.

Many scenarios  (e.g. 

based on historical years)

Failure cost

Etc. T = time horizon = ~1 year
t = time slice = ~ 8760 p.y.

CO2 emissions

RES curtailment

Etc.
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Assessing real storage pro jects 

Among the actors following such an approach, TSOs might be the most prominent to be 
cited, as they to assess the need for network re-enforcement and interconnections. Both 
network models (providing for a few chosen hours optimal power flows respecting the 
N-1 security rule, and estimating the costs of re-dispatching when the network is 
saturated) and market models (simulating one or many year with an hourly resolution, 
and a simplified representation of the network, with interconnected copper-plate 
zones) are used. Utilities also use market models to evaluate the economics of their 
investment projects which requires to understand the evolution of the power markets, 
but utility led analysis (along with the models used) present a high strategic interest, 
and are therefore rarely published.  

The models developed and used by TSOs are thus better suited for providing a public 
reference. But as storage is generally not a regulated asset, little information is available 
on the modelling of storage in their models. Recently though, the European Commission 
has asked ENTSO-% ÔÏ ÐÒÏÖÉÄÅ Á ÄÅÔÁÉÌÅÄ ÐÒÅÓÅÎÔÁÔÉÏÎ ÏÆ ÔÈÅ Ȱ#ÏÓÔ "ÅÎÅÆÉÔ !ÎÁÌÙÓÉÓȱ 
methodology that will be used to select projects within the PCI framework27 [55]  - the 
methodology should apply to all infrastructure projects, including storage, and an annex 
specifically deals with it. Both the Florence School of Regulation (THINK 2013 [60] ) and 
the European Association for Storage of Energy (EASE 2013 [61] ) commented on this 
document. From the modelling point of view, EASE 2013 mentions two points that are 
particularly relevant in our analysis. 

Firstly, EASE insists on the fact that existing market and network models do not always 
include a proper representation of storage, and that therefore the modelling approach 
and assumptions that will be used by ENTSO-E for storage should be well detailed28. 

3ÅÃÏÎÄÌÙȟ %!3% ÎÏÔÅÓ ÔÈÁÔ Ȱthe [gross] socio economic welfare proposed does not include 
the system cost diminutions linked to the avoided fixed costs in generationȱȢ )Î ÏÔÈÅÒ 
words, the modelling approach used by ENTSO-E so far does not include an endogenous 
investment module, even though the impact of storage (and of interconnections) on the 
need for thermal power is important (see for example Strbac et al. 2012 [51]  for 
ÓÔÏÒÁÇÅȭÓ ÉÍÐÁÃÔ ÏÎ ÔÈÅÒÍÁÌ ÃÁÐÁÃÉÔÙ ÎÅÅÄȟ ÁÎÄ 2ÅÂÏÕÒÓ ςπρπ [62]  for 
interconnections).  

Therefore, some more development of these market and networks models should come 
in future years, to better deal with storage and improve the assessment of its value for 
the system. The review by Foley et al. 2010 [10]  on electrical system models concludes 
ÔÈÁÔ Ȱa clear challenge for electricity systems models is the proper consideration of 
ancillary services, the grid and energy storage systems such as PHES and CAESȱ ÁÎÄ ÔÈÁÔ 
some well-established system model developers are now working to integrate storage29. 

                                                        
27 Project of Common Interest - The document presents the general method adopted to calculate the indicators that 
the European Commission will use to rate projects. This methodology is also the one used to provide the Ten Year 
Network Development Plans (TYNDP) 

28 Ȱ%!3% ÉÓ ×ÅÌÌ Á×ÁÒÅ ÔÈÁÔ ÍÏÄÅÌÌÉÎÇ ÓÔÏÒÁÇÅ ÉÎ ÍÁÒËÅÔ ÁÎÄ ÎÅÔ×ÏÒË ÍÏÄÅÌÓ ÃÁÎ ÂÅ ÃÈÁÌÌÅÎÇÉÎÇ ɀ the modelling 
assumptions made can have a strong impact on the results. In particular, the results obtained with deterministic 
ÁÐÐÒÏÁÃÈ ÃÁÎ ÂÅ ÖÅÒÙ ÄÉÆÆÅÒÅÎÔ ÔÈÁÎ ÔÈÏÓÅ ÏÂÔÁÉÎÅÄ ×ÉÔÈ Á ÓÔÏÃÈÁÓÔÉÃ ÁÐÐÒÏÁÃÈȢ ɍȣɎ 4ÈÅ ÍÏÄÅÌÓ ÕÓÅÄ ÔÏ ÐÅÒÆÏÒÍ ÔÈÅ #"! 
ÓÈÏÕÌÄ ÂÅ ÄÅÓÃÒÉÂÅÄ ÉÎ ÄÅÔÁÉÌÓȟ ÉÎ ÏÒÄÅÒ ÔÏ ÁÌÌÏ× ÓÔÁËÅÈÏÌÄÅÒÓ ÕÎÄÅÒÓÔÁÎÄÉÎÇ ÔÈÅ ÒÅÓÕÌÔÓ ɍȣɎȢ3ÔÏÒÁÇÅ ÃÁÎ ÐÒÏÖÉÄÅ more 
services than interconnections. In particular, services linked to ancillary services and power quality should be taken into 
account in the CBA approach ɀ ÔÈÅÒÅ ÁÇÁÉÎȟ ÔÈÅ ÁÓÓÏÃÉÁÔÅÄ ÆÅÁÔÕÒÅÓ ÉÎ ÔÈÅ ÍÏÄÅÌÓ ÓÈÏÕÌÄ ÂÅ ÄÅÓÃÒÉÂÅÄ ÉÎ ÄÅÔÁÉÌȢȱ 

29 For exampleȡ ȰCurrently, EMCAS is being expanded to include energy storageȱ [10]  
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This development could profit from an in depth exchange between stakeholders, in 
order to share good practices and ideas ɀ this literature review intends to serve as a 
contribution to this. 

Assessing the impact of storage on evolving and fut ure energy systems  

These studies often focus on a specific country and use a rather limited number of 
scenarios to represent the uncertainty of load and renewable generation. The models 
used are not always described in detail in the publications, as they can be quite complex 
ɀ it is therefore often difficult to understand and fully appreciate all the results. The 
interest of studying these models, in addition to those used by the TSOs, is that some of 
ÔÈÅÍ ÈÁÖÅ ÆÅÁÔÕÒÅÓ ÔÈÁÔ ÁÒÅ ÎÏÔ ÕÓÅÄ ÓÏ ÆÁÒ ÉÎ 43/ȭÓ ÍÏÄels such as e.g. the endogenous 
capability to make investment decisions Also, academic studies often focus on more 
extreme scenarios than TSOs, as for example systems with 100 % RES supply ɀ the 
models used for this kind of studies might be specific. 

Studies providing endogenous investment modules are particularly interesting, as they 
can predict the evolution of systems under given circumstances (e.g. commodity prices, 
CO2 caps, RES targets) as opposed to normative scenarios (such as a 100% RES system). 
This task is complex, as optimal states can be defined for production, transmission, 
storage, etc. The number of variables can therefore be very high, and the computational 
time also.  

The model in Swider [63]  minimises costs, as a function of available generation and 
transmission capacity, primary energy prices, plant characteristics and demand. 
Constraints such as reduced efficiency for part loaded power plants and start-up costs 
are taken into account. Swider underlines that his model takes into account three 
ÁÓÐÅÃÔÓ ÏÆÔÅÎ ÎÏÔ ÃÏÎÓÉÄÅÒÅÄȡ Ȱendogenous investment in selected thermal technologies 
and CAES, stochastic representation of wind power technology and reserve requirements 
based on a given reliability marginȱȢ 4ÈÉÓ ÍÏÄÅÌ ÈÁs been applied to a use case based on 
the German power system, over 20 years. Interconnections are not taken into account, 
and therefore not optimised.  

Strbac et al. [51]  propose a model seemingly quite similar, on a broader study and based 
on the extension of a former model (presented in Black et al. [64] ). The authors indicate 
that their model takes into account all the segments of the electricity value chain, from 
production to distribution, and endogenously makes investments in transmission, 
distribution, interconnections, generation and storage. Different years are simulated 
(2020, 2030, 2050), and a stochastic representation of wind is used, based on Howell et 
al. 2009 [35] . Grünewald et al. [1] , describing the model used by Strbac et al. [51] , state 
ÔÈÁÔ Ȱfor the first time, the system value of storage, expressed as the savings potential in 
capital and operating costs across the system, can be estimated numericallyȱȟ ×ÈÅÒÅÁÓ 
ÐÒÅÖÉÏÕÓ ȰÓÙÓÔÅÍ ÍÏÄÅÌÓȱ ÆÁÉÌÅÄ ÔÏ ÒÅÐÒÅÓÅÎÔ ÓÔÏÒÁÇÅ ÁÄÅÑÕÁÔÅÌÙ ÄÕÅ ÔÏ Ȱtheir lack of 
temporal resolution or limited ability to capture balancing requirementsȱȢ 4ÈÅ ÔÅÒÍ 
ȰÁÄÅÑÕÁÔÅÌÙȱ ÕÓÅd by Grünewald here could be subject to discussion, as what is an 
adequate representation of storage is still an unsettled question. There is still, for 
example, no clear vision to what are the boundaries of storage, whether it can be used 
simultaneously to provide many services to all the electricity value chain stakeholders, 
or rather if it should be restricted to one (or some few selected) service(s) at a time. 
Furthermore, the representation proposed by Strbac et al. also uses assumptions 
ÒÅÄÕÃÉÎÇ ÉÔÓ ȰÁÄÅÑÕÁÃÙȱ ÁÓ ÅȢÇȢȡ 
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¶ The representation of the transmission system consists of dividing the system in 
4 copper plates instead of one ɀ the results of this approach ought to be 
compared with detailed Optimal Power Flow (OPF) model with a more detailed 
representation of the transmission network. 

¶ Assumptions about the interconnections between the UK and Europe need to be 
quite strong (or somehow arbitrary), as the continental European system is not 
modelled 

¶ The model used to represent distribution grids is based on statistically 
representative networks that need to be validated by other studies 

¶ Demand and wind data is based on a single year rather than longer time periods 
thus limits the statistical robustness of the model. 

Also, little information is available on the computation time needed which is a limitation 
to the analysis we provide here. In particular it would be interesting to understand if it 
would be possible to apply the model to the whole European power system. The work 
conducted by Strbac in 2012, though innovative from the modelling point of view, needs 
to be validated by other studies. 

During the last years the results of many power system studies were published for the 
German system: of those the dena II grid study [49] , the dena RES integration study [59]  
and the dena distribution grid study [59]  are the most prominent; the dena 2008 [27]  
and dena 2010 [3]  pumped hydro storage studies, are also worth mentioning in this 
context. All of these were commissioned by the German Energy Agency. 

In the following paragraphs, we cite some other studies using detailed bottom up 
representations of the system that provide interesting insights on the modelling 
complexity. 

The EnergyPLAN model has been used in a number of studies, as e.g. by Salgi et al. [65] , 
Lund [66] , Connoly et al. [20] , [67] . The model has been used so far for rather small 
systems (Denmark, Ireland). Among the interesting methodological points studied with 
EnergyPLAN, Salgi documents an assumption that is very often used in such power 
system mÏÄÅÌÓȡ Ȱ4ÈÅ ÍÏÄÅÌ ɍȣɎ ÁÇÇÒÅÇÁÔÅÓ ÁÌÌ ÕÎÉÔÓ ÉÎ ÅÁÃÈ ÔÙÐÅ ÉÎ ÔÈÅ ÍÏÄÅÌÌÅÄ ÒÅÇÉÏÎ 
into one unit with average properties. This means that the differences between the single 
ÕÎÉÔÓ ɍȣɎ ÁÒÅ ÎÏÔ ÃÏÎÓÉÄÅÒÅÄȢȱ 4ÈÉÓ ÁÌÌÏ×Ó ÒÅÄÕÃÉÎÇ ÃÏÍÐÕÔÁÔÉÏÎÁÌ ÔÉÍÅ ÂÙ ÁÎ ÉÍÐÏÒÔÁÎÔ 
factor, and is used in most models (see e.g. Strbac et al. [51] , Rebours [62] ). According to 
Salgi, such an assumption has little effect on the results30.  

4ÈÅ ÁÐÐÒÏÁÃÈ ÂÙ 4ÕÏÈÙ ÁÎÄ /ȭ-ÁÌÌÅÙ [68]  is interesting as the bottom up 
representation of the system does not only take into account the variability of wind, but 
also its uncertainty, through a stochastic representation of wind and a stochastic unit 
commitment model31 (see step 2 in Figure 7, the commitment model is generally based 

                                                        
30 ȰThe inaccuracy caused by the aggregation has been evaluated by testing the effect of replacing the single CHP unit 
with ten different interconnected units, each with properties related to actual Danish plants with differences in size, 
amount of heat storage, etc. The differences between these two situations were found to correspond to changes in the 
specifications for the CHP unit of approximately 3%, and such differences are now being compensated for in the 
%ÎÅÒÇÙ0,!. ÍÏÄÅÌȱȢ 

31 Ȱ4ÈÅ ÍÏÄÅÌ ÈÁÓ ÁÎ ÈÏÕÒÌÙ ÒÅÓÏÌÕÔÉÏÎȟ ×ÉÔÈ ÐÌÁÎÎÉÎÇ ÄÏÎÅ ÆÏÒ ÔÈÅ ÎÅØÔ χϊ È ÏÎ Á ÒÏÌÌÉÎÇ ÂÁÓÉÓȢ 0ÒÉÍÁÒÙ ÒÅÓÅÒÖÅ ɍȣɎȟ ÉÓ 
estimated based on the largest in-feed to the system and the forecasted wind power production. Primary reserve varies 
depending on the largest online unit and the amount of wind forecasted; the largest in-feed possible is 420 MW, and 
additional reserve for wind and load forecast errors can range from close to 0 MW (with little or no wind) to 



 

 

23 

 

on a deterministic optimisation). This work highlights the importance of a good 
representation of reserves in such models. Similarly, Black et al. [44] , in studies on the 
UK system, focus on the provision of reserves with storage. 

 Ȱ3ÉÍÐÌÉÆÉÅÄȱ ÒÅÐÒÅÓÅÎÔÁÔÉÏÎ ÏÆ ÅÌÅÃÔÒÉÃÁÌ ÓÙÓÔÅÍÓ 

Most of the system models require a large amount of detailed data describing all 
elements of the system (e.g. power plants, nodes of the power grid, geographically 
disaggregated generation and demand) and as a result of the complexity,  long 
calculation times. The studies are therefore often only applicable to a rather limiter 
perimeter (e.g. a specific country). Some authors use models allowing studying very 
large perimeters, both geographical and temporal. These approaches could be classified 
ÁÓ ȰÓÉÍÐÌÉÆÉÅÄȱȟ ÁÓ ÔÈÅÙ ÒÅÑÕÉÒÅ ÌÅÓÓ ÄÁÔÁ ɉÍÁÉÎÌÙ ÐÏ×ÅÒ ÄÅÍÁÎÄ ÁÎÄ 2%3 ÐÒÏÄÕÃÔÉÏÎɊ 
and are based on strong assumptions (no unit commitment module, copperplates, very 
few conventional technologies, little constraints considered, etc.). 

 

Figure 8 : Schematic structure of a possible simplified system model  

For example, Nyamdash et al. [69]  uses three input parameters: 2006 Irish system 
marginal prices, demand profiles and wind generation data. Perfect forecast of wind and 
load are assumed, and the operation of storage is purely price driven. The information 
is used to build a net load duration curve. The optimal mix to satisfy the load is then 
derived from duration curves, with varying amounts of wind and storage. By comparing 
cases with and without storage, the benefits for the system are quantified in a rather 
simple way. 

Heide et al. [70]  [71]  and other related papers use a similar approach but without the 
use of market prices to deduce the use of storage, and on a larger scale, as they study a 
European system with 100 % RES production. Europe is represented as a copper plate, 
with a given annual consumption (3130 TWh/a, 8 years of data of load factors); RES 
production is modelled in detail, with a 47 km x 48 km resolution, hourly data. 2020 
targets are used for a rough distribution of wind & PV for countries, and enough wind 
and/or solar is added to produce enough energy to meet the load. The need for storage 
and/or back-up capacity is then estimated, by comparing for each hour the difference 
between load and RES production, as illustrated in Figure 8. The required storage 
capacity is estimated with different level of RES production, up to an over production of 
50 % (the RES annual production amounts to 150 % of the annual energy 
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consumption), which means that a large part of RES production is not used, and thus 
storage requirements are less important. 

Steinke et al. [72]  uses a similar approach, but includes an innovative though simplified 
representation of network constraints. Europe is divided in copper plates of different 
radius (from 25 km to 3000 km). Storage is represented by the time during which it 
could satisfy one hour of European consumption. Wind and solar load factors are 
available for 50 km2 areas, and for 8 years. The need for back up is estimated as in Heide 
et al., with different network constraints, different levels of, storage, and for different 
RES portfolios (wind vs solar). System costs are also quantified. 

These last two approaches are useful to provide a vision of the long term evolution of 
the system, up to 2050. It would be interesting to compare the results obtained from the 
simplified models developed by Heide et al. and Steinke et al. with those obtained from 
more complex models, including a representation of the power market. Such a 
benchmark would allow quantifying the validity domain of simplified approaches. Other 
ÒÅÓÅÁÒÃÈ ÕÓÉÎÇ ÓÉÍÉÌÁÒ ȰÓÉÍÐÌÉÆÉÅÄȱ ÍÅÔÈÏÄÓ ÁÒÅ ÐÒÏÐÏÓÅÄ ÂÙ %ÓÔÅÂÁÎ [73] (100 % RES 
system in Japan), Pearre and Swan [74]  (RES and ES to permit retirement of coal-fired 
generators in Nova Scotia), Grünewald [75]  [2]  (net demand with a simplified 
representation of conventional technologies and a simple storage dispatching strategy) 
and Budischak et al. [76] (100 % RES supply in the USA). 

Pseudo system models: 

Engineering models with market feedback use a modified price taker approach taking 
into account how dispatch decisions affect power prices. All system knowledge is 
reduced to the price effect which is derived from correlations between historic 
(residual) load and power prices. This approach is used by Sioshansi et al. [13] , He et al. 
[4] , and dena [3] . Adding feedback to the price taker effect thus allows a fast 
quantification of storage that is not yet in the market,  

2.4.3 Network models  

Network models can also be dispatching models, but their main focus is to model the 
ÆÌÏ×Ó ÉÎ ÔÈÅ ÇÒÉÄȟ ÂÁÓÅÄ ÏÎ +ÉÒÃÈÈÏÆÆȭÓ ÌÁ×Ó ÁÎÄ ÏÎ Á ÄÅÔÁÉÌÅÄ ÒÅÐÒÅÓÅÎÔÁÔÉÏÎ ÏÆ ÔÈÅ 
system (line by line). The interest of these models is to study congestions on grids, and 
how these can be relieved (e.g. by grid reinforcement, the addition of storage, etc.). 

TSO use network models on a daily basis to control flows in all lines, and also to plan 
investments (need for future reinforcement). These optimal power flow models (OPF) 
require detailed data about the entire high voltage network, along with power 
generation and consumption at all nodes for the time considered. Then probabilistic 
approaches are used to verify security rules32. Both the models' complexity and the data 
needed can make it difficult for actors other than TSO to perform such studies, which 
explains the rather limited literature on the subject. However, some TSOs (e.g. National 
Grid) provide documentation for simplified representations. 

                                                        
32 Such as for example the N-1 rule: if one line or production unit fails, the resulting power flow should also respect 
the maximum admissible intensity. The number of combinations that have to be simulated is therefore very high. 
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Figure 9 : Schematic structure of a network model  

The VDE 2012 study on storage [56]  proposes a good example of an approach 
combining both a market model and a network model using load flow simulations. Dena 
2010 grid [49]  also uses a combination of a power flow model and of a market model.  

Silva et al. [77]  follow a simplified approach by dividing the UK power network in 16 
buses33. Then for each hour, the cost of redispatching because of network constraints is 
evaluated by solving an OPF problem, with and without the presence of storage, which 
is dispatched in order to minimise system costs. Silva et al. therefore quantify the total 
avoided redispatch, using a simplified UK network provided by the TSO. This approach 
could be extended to other countries; however, assessing the validity of a simplified 
ÎÅÔ×ÏÒË ×ÉÔÈÏÕÔ ÔÈÅ 43/ȭÓ ÈÅÌÐ ÃÏÕÌÄ ÂÅ ÃÈÁÌÌÅÎÇÉÎÇȢ 

Other authors study the value of storage in the presence of network constraints, but 
only for specific cases. Examples include Denholm and Sioshansi [41]  and Loisel et al. 
[42]  which both assess a use case with wind production. Among the studies dealing with 
this subject and that are not discussed in detail in this report, we can mention the Lower 
Colorado River Authority 2003 [78]  (a specific case study in ERCOT, Texas) and 
Stanojevic [79]  (an optimisation case for an 11 kV UK branched distribution network). 

The study of planning and optimisation of distribution grids is a field of research in 
itself that is not exhaustively discussed in this report. From the methodological point of 
view however, it can be mentioned that cost benefit analyses is often applied to choose 
the best options in distribution grids between reinforcement, curtailment, load 
shedding or storage, as in Delille [80] . Concerning the modelling itself, various authors 
proposed reviews of the existing techniques, e.g. Keane et al. [81]  and Tan et al. [82] . 

So far, few studies propose estimations of the value that storage could have on a very 
large scale. Some probabilistic approaches exist, e.g. the one proposed by Gan [83]  and 
used by Strbac [51] , that consist of generating variations of distribution grids. The value 
of storage can therefore be evaluated on an important number of grids without the need 
to use data from real grids, and these results can be added to some more conventional 
system modelling using copper plate assumptions. These methods appear quite new, 
and still need to be verified.  

                                                        
33 As already described above, Strbac et al. 2012 uses a similar approach, with 5 zones instead of 16. 
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2.4.4 Methods for island sys tems 

A number of studies concern the value of storage for small autonomous electricity 
networks. There are usually no markets in islanded systems as for practical reasons 
derogations were allowed by most legislations regarding deregulation and unbundling 
requirements. As a result, most island studies fall in the category of system models. 
Island power systems are also considered as a test case for the deployment of both RES-
E and storage by the power industry as described by EURELCTRIC [84] . 

Examples of island studies include Kaldellis et al. ( [85]  and previous work), Kapsalli et 
al. [86] , Lobato et al. [87]  (economic assessment of providing primary reserve with 
energy storage in isolated systems), Carapellucci et al. [88]  (modelling and optimisation 
of an energy generation island with renewable and H2). 

In such systems, specific constraints need to be taken into account, such as low levels of 
inertia that would require levels of ancillary services not needed on large 
interconnected systems. Delille et al. [89]  provides a good example of how storage could 
provide a form of virtual inertia ɀ a detailed model of an islanded system is used, and 
the impact of a unit failure on frequency is assessed through dynamic simulations 
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3  0ÒÏÆÉÔÁÂÉÌÉÔÙ ÏÆ %ÌÅÃÔÒÉÃÉÔÙ 3ÔÏÒÁÇÅ 

3.1 Motivation for studying storage profitability  

The purpose of this chapter is to provide an overview of the current studies on the 
profitability of storage investments and of their findings, along with identifying gaps 
and issues for further research activities. Storage has been a full part of power systems 
for a long time, as it was originally developed along with base-load generation However, 
the renewed interest in storage of the last years comes from two major trends: 
breakthroughs in storage technologies and increasing shares of RES generation. These 
drivers led utilities, researchers and policy makers to look at storage under a new 
perspective34. 

The growing share of intermittent renewable generation in the power system increases 
the need for flexibility options thus potentially for storage. Changes in the generation 
portfolio (e.g. the decommissioning of nuclear and coal power stations) might also 
impact the flexibility of the system. .A number of studies assesses the future market size 
for electricity storage resulting from RES-E additions, e.g. PNNL [25] . 

At the same time, the appearance of new technologies suggests that specific investment 
cost of storage could go down. Adiabatic CAES and electrochemical storage (Li-ion, NaS 
batteries, etc.) are in the focus of many R&D projects.  

In addition to these two drivers, the deregulation of the power industry increased the 
need to study the economics of energy storage. Markets were created on which storage 
can generate revenues, but boundaries were also created (e.g. regulated vs. deregulated 
activities), making it more complex to determine the value of storage. Therefore, a need 
ÔÏ ÕÎÄÅÒÓÔÁÎÄ ÔÈÅ ȰÎÅ×ȱ ÂÕÓÉÎÅÓÓ ÃÁÓÅÓ ÆÏÒ ÓÔÏÒÁÇÅ ÅÍÅÒÇÅÄȢ 

The results obtained in storage profitability studies are of relevance to three broad 
groups of stakeholders:  

¶ Storage investors  

¶ Policymakers  

¶ Researchers or consultants  

Most of the published literature comes from the last group but is motivated or 
commissioned by either potential investors (in case of the CAES study by Fraunhofer 
[23]  which was financed by German utilities) or somehow serves as policy support (e.g. 
dena distribution grid study [59] ),. Academics and consultants involved in energy 
systems R&D typically explore options for future energy systems, develop scenarios and 
possible pathways in the continuous transformation of energy system or consider the 
interaction between technology, business and regulation. The perspective of the two 
potential client stakeholders slightly differs. 

Storage investors or developers of technology aim at understanding revenue streams 
over the economic life of the investment in support of the decision making. Uncertainty 
of future earnings is often referred to as one of the main barriers to technology 
deployment and further development (see e.g. in the EU Commissions Public 

                                                        
34 Other motivations for the investment in power storage can be occasionally found e.g. in China and India where 
storage is also regarded as an alternative to provide peak power in a system with a large coal and nuclear share, as 
discussed by e.g. Ming et al. [124] , Sivakumar et al. [152] ) 
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Consultation on Generation Adequacy, Capacity Mechanisms and the Internal Market in 
Electricity [90] , ENDESA 2012 [91] . The perspective of policy makers and regulators is 
different. They are in charge to set fair and harmonised rules across the value chain 
segments of the power system and have to understand their rulings' implications for all 
market participants.  

A possible classification of storage studies can be done with respect to the boundary 
drawn around the object studied. In this report we distinguish between two 
approaches. Firstly there are those studies that assess the techno-economic effects 
produced directly by the storage investment on the economic and financial situation of 
the investor. In this case the profitability of the investment could also be derived by 
analysing the balance sheet of the investor all along the economic life of the storage 
project, if this was available. Secondly there are studies evaluating the "extended" net 
benefits of a specific storage project by addressing system effects (that can be attributed 
unambiguously to the storage operation). Most of those studies take into account only 
part of the power system value chain (see Table 3), while some attempt at a more 
ambitious goal by including benefits on the entire power system. From this 
categorisation two broad families of studies can be identified, as already introduced in 
Chapter 2 of this report. 

Engineering studies ask if the investment on a specific storage project would be 
adequately remunerated from an investor's point of view. This approach aims at 
maximizing the investor's profit under specific technical constraints. The investor's 
profit is given by the difference between storage revenues and the fixed and variable 
costs of the investment. Constraints exist in the form of e.g. the efficiency of charging 
and discharging the storage, ramping rates, minimum and maximum reservoir levels or 
grid connection constraints. Further differentiation can be made by the number of 
services, provided by storage in the model. The system around the storage interacts 
through price signals, demand and possible technical constraints like a maximum power 
rating of a grid connection. Engineering studies are discussed in the first part of this 
chapter.  

System studies aim at identifying the economic benefits of adding storage to the power 
system as a whole. In this case, the objective function is given by total system costs 
which are minimised. Total system costs are considered in this approach as storage is 
embedded in the system and affects system costs directly and indirectly through its 
influence on market signals (commodity prices, power demand and supply, etc.) and 
system infrastructure operation (e.g. grid connections at transmission and distribution 
levels). Further differentiation is possible with regard to the system boundaries which 
can range from a region's power plant portfolio to an entire energy system including 
industry, the heating sector and transport. The second part of this chapter is dedicated 
to system studies. 

Engineering studies often confine the economic value of a storage device to only one of 
its possible applications (e.g. power market arbitrage); this could lead to 
underestimation of the potential of the storage. 

On the other hand, the challenge faced by system studies is the comprehensive 
identification of benefits and beneficiaries of storage services. In only one of the studies 
reviewed (Denholm et al. 2013 [92] ), both a system and engineering study methodology 
is applied to the same case leading to significantly different results.  
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It is important to understand the applicability of results obtained from either 
approaches. As research work is often based on case studies, the results might not be 
easily applicable to new situations. A number of questions are thus relevant for both 
engineering and system studies. 

¶ What is the bandwidth of results? Is there a consensus? 

¶ How do results change with key input drivers such as: geography, time period 
examined, assumptions on commodity prices, storage usage considered? 

¶ How will profitability develop over time, in particular with reg ard to a system 
with high RES-E? 

¶ What are the effects not captured by the methodology applied? 

3.2 Engineering studies  

3.2.1 Storage business model  

Engineering studies address the value of storage from a pure investor's point of view. As 
discussed in Chapter 2, they generally quantify the profits generated from the most 
common applications of storage: arbitrage and ancillary services. The storage device is 
modelled as a "price taker" in the power market using either historical or model 
generated price data, the latter requiring specific techno-economic and market 
assumptions (e.g. energy mix and market regulation, gas, coal and carbon prices, 
techno-economic features of the storage, future RES-E deployment).  

 

Figure 10: Main business models for bulk electricity storage in a deregulated power 
system 

The regulatory context in which energy storage operates is crucial for storage valuation. 
Beginning in the 1990s, both the European Union35 and the United States started a deep 
transformation of the energy market from vertically integrated monopolistic and partly 
state-owned utilities to markets with various competing firms.. To allow this transition, 
the regulatory framework set the rules for the unbundling of the power sector with a 
differentiated regulation of its value chain segments: generation, wholesale and trade, 
transmission, distribution and retail. Of these, only transmission and distribution 
remain regulated natural monopolies while generation, trade and retail are open to 
competition and subjected to market rules. 

The peculiarity of storage technology is that it can provide services that affect the 
regulated as well the deregulated domain. Examples are arbitrage and reserve power36 
                                                        
35 In the EU, three successive directives have set the legal framework for this process: 96/92/EC [155] , 2003/54/EC 
[156]  and 2009/72/EC [144]  

36 While this is technically also true for any type of power station eligible for providing reserve power, storage 
devices may derive a significant share of their revenues from providing reserve power.  
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application by large scale storage which can serve the wholesale and trade sector as 
well as transmission. The literature reviewed was almost entirely published after 2000 
thus taking market deregulation into account. 

Power market arbitrage consists in storage devices charging in hours when electricity 
prices are low, and discharging in hours when prices are high. Price differences 
generally result from system load and increasingly from supply of intermittent RES-E 
production i.e. from wind and PV.  

Reserve markets are a somewhat special case in a deregulated power system. The 
unbundling of the power sector created business opportunities to providers of ancillary 
services and reserves (e.g. frequency control, secondary and tertiary reserve, and 
varying other services). New competitive markets for these services37 emerged, 
providing additional and sometimes significant sources of revenues for electricity 
storage plants, as the TSO is usually not allowed to own any production assets that 
could provide these services to guarantee the balance between supply and demand38. 
Reserve market products are usually defined functionally and according to the 
timeframe within which power has to be delivered. 

 

Figure 11: Reserve market products (Europe) and typical storage technolog ies 

In general storage profits from arbitrage and reserve power depend on two main 
drivers: the market's/country's conventional energy mix and the flexibility of the 
generation park. Commodity prices (i.e. prices for coal, gas and CO2 emission rights) 
strongly affect the storage business case if the electricity price for charging is set by 
coal, hydro, nuclear (or occasionally by wind power) and if the electricity price for 
discharging is set by a CCGT, an open cycle gas turbine or an oil fired plant. The 
flexibility of a generation park also has an impact, particularly if base load plants need 
to be operated in part load to allow some load following, thus leading to increased 
reserve costs. If CCGT and PHS capital costs are roughly equal as it was the case in mid 
late 1970s (see Denholm et al. 2010 [93] ) the business case for storage was determined 
by fuels price levels.  

In addition to these main services (arbitrage &reserve), two US studies (one by EPRI 
[38] , the other by SANDIA National Lab [45] ) systematically quantify the value of 
storage along the entire value chain including the regulated sectors and end use (see 
Figure 16). Beaudin et al. 2010 [94]  make a comprehensive list of benefits of energy 
storage by application, with desired technical characteristics of the storage device. 

                                                        
37 In some markets, these were preceded or still are complemented by bilateral arrangements 

38 See chapter on regulation for a more detailed discussion. 
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3.2.2 Technology scope 

Figure 11shows particular reserve products provided by certain storage technologies. 
Batteries and flywheels are mainly used for primary reserve (also frequency control in 
the US) due their fast reaction capability and their (in general) limited storage capacity 
as e.g. in several projects on European Islands as described in a report by EURELECTRIC 
[84] . Due to the relatively slow reaction time, CAES is usually not able to participate in 
secondary reserve while PHS is providing secondary reserve in some countries.  

This report focuses mainly on bulk storage: Pumped Hydro Storage (PHS) and 
Compressed Air Electricity Storage (CAES). These are the only electricity storage 
technologies that are or could be deployed in the range of several hundreds of MW 
today. 

The results of the engineering studies are presented by technology in a first step, given 
different investment costs, variable costs and income streams. Though both 
technologies are suited for providing arbitrage and reserve power, there are differences 
in the value drivers. 

¶ PHS incurs almost no variable costs other than the costs for the power purchased 
for pumping water into the reservoir. CAES in the so-called diabatic version also 
consumes natural gas and might require emission certificates. 

¶ The round trip efficiency of PHS is usually higher than CAES allowing arbitrage 
between lower power prices differences thus during a larger number of hours. 
Also, self-discharge is higher for CAES, in particular in the adiabatic case39. 

¶ Investment costs and the certainty with which these are known differ between 
mature PHS, diabatic CAES deployed only twice on a global scale, and not yet 
deployed adiabatic CAES. 

Less mainstream storage technologies like batteries (especially NaS, Pb-acid and Li-ion) 
and flywheels are usually considered for distributed deployment and in small island 
power grids, which are both outside the scope of this literature study. However, 
references to recent studies have been included where these technologies are proposed 
for the transmission grid (PNNL 2012 [25] , Walawalkar 2007 [22] ). A separate section 
discusses the results the studies by EPRI [38]  and SANDIA [45]  which derive cross 
sector value pools in a technology neutral way. 

3.2.3 Pumped Hydro Storage  

Table 1 shows the main characteristic of pumped hydro engineering studies in terms of 
market, years and services. The studies are based on historic market data (from Europe, 
the US and Australia) except for Loisel et al. 2010 [42]  and PNNL 2012 [25]  which use 
market model generated prices. Revenue sources considered are power market 
arbitrage, reserve markets, capacity payments (where these exist) and other revenues.  

The graphs in Figure 12 show the profitability figures of those studies providing data in 
sufficient detail to be represented in one graph. The bars in the diagram represent the 
ranges of annual gross margins found within one study. It is calculated as the difference 
between storage profits and variable plus fixed O&M costs per kW of installed (turbine) 
capacity. If a study does not explicitly state annual storage revenues, these are 

                                                        
39 Linked to the thermal storage. 
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calculated from other data published in the respective study. For Loisel et al. 2010 [42] , 
annual gross margins have been recalculated from the NPV, applying interest rate, 
economic lifetime and inflation rates provided. In the case of He et al. 2011 [4]  the 
figures obtained from the simulation of one week of storage dispatch optimisation have 
been extrapolated to an entire year simply multiplying results for 52 weeks. All 
ÃÕÒÒÅÎÃÙ ÕÎÉÔÓ ÈÁÖÅ ÂÅÅÎ ÎÏÒÍÁÌÉÓÅÄ ÔÏ Ό2012 applying exchange rates and inflation 
figures according to Eurostat [97] . The profitably figures are differentiated by colour 
according to the combinations of services provided. Arbitrage only figures appear in 
dark blue on the left hand side of Figure 12 while figures including revenues from 
reserve and other markets are shown in light blue and on the right side. In case a study 
publishes results for different power markets, these are shown in separate bars. The 
ranges shown in Figure 12 are given by the following variation of the input parameters. 

¶ Historical power prices taken from different years: Sioshansi et al. 2011 [5] , 
Ekman et al. 2010, [12] , Steffen 2012 [95] , Rangoni 2012 [96] .  

¶ Effect of capacity payments: Sioshansi et al. 2011 [5]  

¶ Prices generated by a market model making different assumptions on the 
storage penetration level PNNL 2012 [25] , Loisel et al. 2010 [42]  

Market  Year Technology  A
R

B
 

R
E

S 

C
A

P 

O
T

H
E
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Author and year  Ref. 

BE 2007 PHS  x x  x He et al. 2011 [4]  

DE 2002-10 PHS x    Steffen 2012 [95]  

DE, FR 2010-30 PHS + wind x x   Loisel et al. 2010 [42]  

ES, IT 2008-11 PHS x    Rangoni 2012 [96]  

PJM 2002-08 PHS x  x  Sioshansi et al. 2011 [5]  

WECC40 2020 PHS x    PNNL 2012 [25]  

AUS 2007 PHS + wind x    Hessami et al. 2011 [40]  

Table 1: PHS Engineering studies overview 41 

As authors make different assumptions on the investment CAPEX and on weighted 
average costs of capital (WACC), the studies own judgements on profitability are usually 
not comparable. Therefore, annuities for an investment in a generic PHS are shown as 
straight lines in Figure 12. Profitability is reached if gross revenue exceeds these lines. A 
total of four possible cases are shown by combining 2 different values for the WACC42 
(6% and 10%) with 2 different levels of specific CAPEX (500 ɀ ρυππ ΌȾË7 ÔÁËÅÎ ÆÒÏÍ 
the Technology Map of the European Strategic Energy Technology Plan [98] ).The 
different WACC levels represent typical values for a regulated and a deregulated 
business. An investment life time of 35 years is assumed for both cases. 

                                                        
40 The study considers California and the North West Power Pool of the US Western Electricity Coordinating Council 

41 ARB : Arbitrage ; RES : Reserve ; CAP: Capacity mechanism 

42 This report makes no attempt at providing an "adequate" value for costs of capital. A discussion of the current costs 
of capital for utilities can e.g. be found in a recent EURELCTRIC report [157] . 






























































