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The economics of electricity storage are currently in the focus of research, by
academics, utilities, potential investos as well as policy makers. The present document

is the result of the analysis of more than 200 publications on that subject. It aims at
DOAOGAT OET ¢ OEA OOOAOA 1T &£ OEA AOO6 OACAOAET ¢
storage. Three particular aspectsare given attention to: the methodologies used, the
profitability results obtained and the impact of regulation on storage economics.

Assessing the economics of storage generally implies developing and using models.
-ATU OAOAAOAEAOC OOAhOAIORAIGIOET COATTOMMAD OEO

without assessing its impact on the system. These approaches require less data and less

ATipil Ag T TAAITTEIC OEAT OOUOOAI APDPOT AAEAOGS
projects, or study long term system evolutns. Both approaches are complementary, as
ITA AT OxAOO OEA NOAOOEIT &OI i Al EIT OAOOI 060

and the other answers the question of the interest of storage to increase social welfare.

There is no universal answer on \Wether storage is a profitable investment or adds
value to a system. Recent engineering studies seem pessimistic regarding the possibility
to earn sufficient revenues in power and reserve markets in order to pay back the
significant investments. A number 6 value pools have been identified in addition to
arbitrage and reserve market case.

A comprehensive and consistent assessment of cross value chain value of storage has
not yet been performed for many market situations; however publications on specific
combinations can be found.

System studies provide an even larger bandwidth of results than engineering studies.
While storage value has been identified in many cases, a negative impact is also possible
if the deployment of storage requires additional invesnent in grid or generation assets.

All attempts at storage valuation require making assumptions on storage regulation.
This may range from fees and technical rules, ownership questions or fundamental
market regulation. Small technical issues can have a tg impact on the viability of
storage. As all current valuation frameworks for large scale storage originate in the
deregulation of the power system, any change will have an impact on storage. Storage
will thus be affected by the upcoming regulatory discusons emerging from the
developments in the power system, such as market design and rules for RES integration
or considerations on ownership and operation of storage devices.

This literature review also includes recommendations for further research. These
should be regarded as a base for discussion.
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This document summarises the results of a joint EDF R&D / MRET research effort

about energy storage. It provides a summary review of current literature on energy
storage with particular attention to its technical and economic evaluation.

The motivation for the literature review originally resulted from the interest of both
organisations in identifying relevant subjects to study in a joint project. As such, it is
intended at providing information for decision makers and scientific advisers of both
organisations as guidance for further research. It is also meant as a document
summarising current issues in the field of electricity storage in Europe. The goal of this
joint study is to identify the mog relevant issues electricity storage is facing in the
current European environment, in particular to:

1 Understand the current market environment for electricity storage including
drivers and barriers to its deployment as well as the impact of technology
developments

1 Identify the methodologies used for assessing storage value as defined by the
fundamental assumptions, the problem definition and the solving strategies

1 Define the range of possible regulatory environments which could address the
current challenges for electricity storage

Meeting these goals requires a critical review of previous studies that address the
storage business case from different perspectives and that make use of different
economic approaches. The key trends identified or possible caoversies provide
important input for future work. The authors thus aim at identifying literature
providing evidence both supporting and contradicting hypotheses on the value of
electricity storage.

In total, more than 200 publications were reviewed. Thesénclude work published by
academic researchers, consultants as well as stakeholder financed studies carried out
by either of the two previous groups. In some occasions, publications were the result of
collaborations of several groups. Also, we confront he study results with current
stakeholder organisation's position papers.

The scope of the analysis is the European Union (EU). Studies from the US are also
selectively included if deemed relevant to the European context. In particular, the wider
regulatory variety of the US electricity markets makes these worth studying. Moreover,
the analysis is focused on studies published during the last 10 years with a focus on
more recent publications, taking into account the deregulation of power markets and
the integration of significant quantities of renewable energy. The latest publications
included in this review date from May 2013. The appendix provides a more detailed
overview of the literature studied.

No restrictions were applied regarding the electricity valie chain steps considered
however studies on the application of generation and trading make up for a large share
of the material reviewed. Transport and distribution issues are nevertheless addressed

1E.g. the dena Il grid study49] was the result of collaboration between academics, consultants, TSOs published by a
public private partnership.



by a number of recent publications. We addressed all tenologies of electricity storage
allowing a back to back conversion (thermal storage is therefore not considered here).

This report is structured in three parts defined by the aspects discussed with some
publications analysed in more than one chapter:

1 A review on the methodologies used in the studies

1 The profitability of storage from different perspectives as seen by different
studies

1 The impact of regulation on the storage business case

While the second chapter will likely be the starting point for the impatient reader
interested in comparing numerical results, the other chapters are regarded as equally
important by the authors in order to understand the framework within which storage
operation, and consequently valuation, is possible.
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2.1 Motivation for studying methodology

A number of different mathematical models are applied when studying the interactions
of the different parts of the electricity value chain and in particular power generation
and trading. The amlysis of the methods used in literature to investigate the role of
storage is a way to have a clear view of what is available today, what has been used
before, and what are the perspectives and coming trends. Our literature review of the
methodologies us& was mainly guided by the following three questions:

1 Are there generally accepted methodologids assess the economics of electricity
storage such as for example the methodologies used to study interconnectiens

1 What are the underlying hypothese®f the most frequently used mathematical
iTAAT O AT A Eix Al OEAU TEIEO OEA OAOOI OO
forecast, marginal analysis implying that the storage device has no impact on the
prices, etc.)?

1 Are there gaps in the subjects studied imerent to the complexity and inadequacy
of models? Does the fact that some subjects are less often studied than others be
related to the fact that the subject is new, or/and technically difficult to model
(e.g. storage services mutualisation)?

Moreover, urderstanding the methodologies proposed in literature is also a good way
to better understand our own models, as it allows us to evaluate both their adequacy to
our needs (what can we do/not do with these models, are there good methods widely
used that we ould adopt?) and their results (can we benchmark them with others, and
what are the differences?).

2.2 Overview on power system modelling approaches

As stated above, analysing the methodologies used to assess the interest of storage is
useful, particularly for stakeholders or investors who wish to have a better
understanding of what models can and cannot tell them. However, in addition to the fact
that power system modelling is a vast world, the language used to describe models and
mathematical techniques oft& represent an important barrier for people not familiar
with modelling. And as the terms are often used in many different ways by authors, not
getting lost in such a semantic jungle is quite challenging.

Therefore, the objective of the following paragraph is to provide a brief introduction to
power system modelling, and to present some useful definitions and examples, in order
to help the reader classifying and understanding models.

This is an ambitious task: power system modelling is a very vast world dnit is not
always possible to propose a common analysis framework for models dealing with very
different subjects (from modelling voltage variations in grids to modelling the
interactions between players in electricity markets for example). As a resulthis report

is only a first step in that direction and aims at creating a basis for discussion.

2See e.g. ENTSEBEO DPADPAO 11 Al OBp]: khéd id aEeldarvisidni oAthelu€eEoO market model and
network models to decide which interconnections need to be prioritized
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Figure 1: A semantic jungle of power system modelling terminology

2.2.1 Preliminary definitions

AEAOA EOI 80 A OITEEEMNA T AREEhLEQGE TAGOET OBA OAR
definition that fits to the models they use, and that is not always broad enough. A model

EO OOT i AOEET ¢co6 OEAO EO OOGAA O1 AAOGAOEAAR AT/
an activity, etc. Most of the modelssed in the reviewed literature fall into the category

I £ Ol bOEI EOAOEIT 1T mbdeldeAdrallyicentainsEne Ollowing BlémeitsE

1 State / free variablesdescribing the state of the system studied for example,
frequency level, or generation ost can be state variables.

1 Decision variablesllowing controlling the system, i.e. to modify state variableg
for example, the level of production can impact the frequency level, and the
generation cost will vary according to the power plants used.

9 Setsof constraints on the variablesgenerally, both state and decision variables
must be contained between boundaries (frequency cannot be negative; power
plants have maximum capacities, etc.).

1 Parameters this is a decision variable whose value is exogenotis the model
(i.e. fixed by the user). For example, the power plants that are available and their
technical characteristics (max/min capacities, heat rates, etc.) can be
parameters. A model should be usable with different sets of data, i.e. different
values of the parameters.

T Objective function(s)these are composed by a function of the decision variables,
AT A AU A AT 1 OOOCAET O 11 OEAO #&AOT1 AGETT60 1T «
the frequency level (function) at 50 Hz (constraint), or to minimisg(constraint)
the production cost (function). For a given optimal solution according to an
objective function, i.e. for given values of the state variables, the value of the

decision variables can be obtained.

Running the model with a given objective funébn and set of parameters/constraints
consists of solving a givermathematical probleniz the same mathematical problem

3 Using or not using a given constraint can actually be ammeter.



could be solved by using different methods, whose complexity differ according to their
capacity to deal with more or less complex objeives functions & constraints
(linear/non -linear, deterministic/stochastic, etc.).

As mentioned before, many different kinds of models are used to study power systems,
and many terms are used to describe these models, as described=igure 1. It appears
that these terms can be divided in three categories, as shownhigure 2:

1 High level model classifications proposed in literature
1 Terms related to the way the problems are written/formulated

1 Many existing mathematical notions/techniques/concepts

Some high level Different sorts of problems Many solving techniques
classifications proposed formulated within the model
I Engineermodels
Grunewald,
I System models 2012
Exclusive
categories
I Equilibrium model l
I Optimization model l Ventosa, I Constrained/unconstrained programming l
2009

I Deterministic modelling l

Heuristics

I Simulation model l Exclusive I Linear/non linear programming l
categories I . " l
Stochastic modelling I Mixed integer linear programming l
I Fundamental models l I . . l
Dynamic programming
I Agentbased models l I Scenario trees l
I Financial mathematical models l Mést, 2010 I Quadratically constrained programming l
I Econometric time-series models l Exclusive I Real options valuation l
categories
I Game theoretic approaches l I Linear problem l I Price decomposition l
I Non linear problem l I Quantity decomposition l
I Simulation tool l : P ;
Non linear objective function .
- ! I Uhlenbeck Ornstein l
Scenario tool == Non linear constraints I l

Equilibrium tool

Top-down tool

Connolly,
2010 I
Non exclusive

categories

Etc. l

Bottom-up tool

Investmentoptimisation tools

I Operation optimisation tools l
| e |

Figure 2: An overview of terms used to describe models and solving techniques z own
depiction 5

The following paragraphs give further information about each category, but we can
already make an important distinction not always made by authors between the

AT 1 Pl AGEOU 1 £ OE A ami@hedarpfexitp ddtheBbving ©dhrigbetukeld
Indeed, a nonlinear problem for example can often be reformulated as a linear
problem, by modifying or removing constraints, or modifying the objective function.
%OAT OET OCE OEEO OOAA&EI Oi Ol AGEIiT6 EO A EAU
in detail.

o)

44EEO | AGEAI AGEAAT DPOT AT Al EO CATAOAT T U AAI T AA Al Oi POEI EO/

5 Using classifications from Grinewald1], Ventosa[151], M6st[8], Connolly[67]



2.2.2 Model families

Many authors propose reviews of power systems models, with different scopeand
objectives. A short overview of two of these reviews/classifications is proposed here.

One starting point to classify models can be the system boundary drawn around the
storage, i.e. the level of detail with which the energy system surrounding theosage
(grid, power system, entire energy system) is represented. In this sense, Griunewald et
al. [1], [2] propose a very fundamental distinction betweenengineering and system
models:

1 Engineering nodels focus on assessing extensively the techreconomic
performance of one specific technology, in a given system context. Generally,
these models are used by studies that focus on the control and optimisation of a
given storage asset. They aim at assesgi in a given context, how the asset
should be monitored and how profitable it would be.

1 System model#cus on the behaviour of an entire energy system (be it national,
European, regional, etc.) and seek feasible and least cost solutions (that bring
value to the system as a whole) under certain constraints, for example min cost,
or carbon emission targets. These models aim at providing insights on the
overall benefits provided by storage, i.e. how storage can help reducing the costs
of electricity.

As Grinewald et al.[1] highlight, neither class of model is generally sufficient to give a
clear picture to the policy makerz engineering models being very precise, but often
case specific, and system models being very inclusivieut still unable to adequately
represent all the constraints. The advantages of the developments of high performance
computing might be offset by the fact that system models are getting more and more
complexs. Bearing that distinction in mind, the authorsstress the interest of developing
more system models, focusing on the "system value" of storage.

2.2.3 Formulating of the problem

When stating that a model is deterministic/probabilistic, or linear/non-linear, what is
described is not the way the problem is sold, i.e. how the solution of the optimal
solution is found, but the way the problem is formulated. As these terms are used in
TAAOT U ATl 1 1TAAI 66 AAOAOEDPOEITh xA DPOIT DI OA

Linear vs non -linear problems

Non linearity can gpear either in the objective functions or in the constraints. A typical
class of nonlinear problems are modified pricetaker models in which the effect of a
dispatch decisions on prices is taken into account, often by a linear relationship

6 Note that not all models are either an engineering or a system model: for example, a model simulating & comparing
the different options available to integrate distributed energy resources, and face the tension/congestion issie
(namely, grid reinforcement, selective curtailment, storage, voltage control, etc.) could be considered as a system
model in that its objective is to find the optimum design to reduce costs, satisfying the operational constraints. But it
is unlikely that this model will be able to give precise insights at a national level, given the diversity of distribution
networks z it has to be applied for each existing context, which would therefore classify this model as an engineering
one. This example highlightshe limit of the classification proposed.

7 A price taker approach uses prices as exogenous inputs, and does not modify them.



between power and price making the objective function quadratic in the power, e.g. by
denal3], He et al[4], Sioshansi et a[5] &

In the constraints, a nonlinearity can appear f a constraint involves, for example, the
product of two variables (e.g. K5 A, U < 220 V, U*l < 1000 AV). An example for this is
given by Benitez et al.[6] in a nonlinear constrained optimisation program of an
electrical grid. In this case, the nodinearity results from the representation of hydro
generation with the power rating being depending on the volume of water in the
reservoir. This leads to quadratic constraints in an otherwise linear problem.

Deterministic vs stoc hastic problems

As underlined in Wallace and Fletei7lh OOOT AEAOOEA bDHOI COAI T ET C
not a well-defined topic. [...] Generally, stochastic programming refers to a problem

class and not to the choice of solutio® OT AAAOOAOG68 4EA AOOEI 00 A&
OAOOEAI AO OUPEAAI T U 1 E®@ AEOAOQOOGEITTO 1T £ 11 AAI
the two aspects even though they are often deeply related (some solution procedures

are elaborated to solve one specifiproblem).

Elaboration on : Mdst and Keles, 2010, A survey of stochastic modelling approaches for liberalised markets
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Figure 3: From deterministic to stochastic models z based on Mdst and Keles [8]

Stochastic models take into account the fact that the future cannot be perfectly
predicted, as some factors€.g. the unplanned outage of a power plant or the deviation
of actual renewable production from forecasts) are uncontrollable or not fully

predictable by nature (the evolution of these factors is thus called a stochastic process).

8 Some authors also classify models including discrete variables as ntinear problems - e.g. in a model simulating
the dispatching of production units by minimising variable costs, integrating stadup costs introduces a non
continuous variable: producing one more MWh with a given technology can either cost 'x' or 'x+stawp cost', thus
the objective function therefore becomes nodinear.



In real life, decisions & not made with a perfect view of the future, and the operator
has to act according to a pralefined strategy or policy. The point of stochastic
modelling is to propose such strategies which implies representing stochastic
processes.

Therefore, a stoclastic modelling approach generally implies 2 steps: first, an
optimisation is carried to provide strategies at all the future possible states of the
system; then, a second step consists of applying this strategy to a given scenario
(decisions/actions at ewry time step). Deterministic approaches on the other hand
directly provide decisions, without the need to define a strategy.

The objective function of a stochastic approach will be:
i El. Qo k O'0Oah
Or more generally (to include multi stage problems)
[ ET. Qo k 00w h
Where N _ N
ON A QM Qweé A Qw QD QE QO wa Qi
1T N LIQE0 QGO0 QN BOIQEDD o0& Q4 @ BXd 0l RCEmn i ¢ ®d Qd
"OQIME @ QQ CXDOQUID Q¢ ¢
In other words, the objective is to minimise the expectation of value on the different )
scenarios.o] refAAOO OEA E£AAO OEAO EIT 1 OO0 E @OACAO
takes into account the uncertainties not only in t, but also in t 3t
While the objective function of a deterministic approach will be, for each scenario:
[ Efown
Where . . N
WM a QN Qweé AQw QD BE QOwa Qi
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In other words, the objective is to minimise the objective function for each scenario

(and then possibly take the expectation, min, max, etc. over all the scenarios). Here,
w] reflects the fact that decisions are made with a pegtt knowledge of the future.

In order to establish a strategy, scenarios describing possible realisations of a random
DAOAI AGAO j5q TAAA O1 AA AT 1 OOOOAOAA | Ascs
parameters and the construction of the scenarios is fll part of a stochastic modelling
approach, as indicated by Most and KelefB], in a survey of stochastic modelling o
APDPOI AAEAO £ O 1 EAAOAT ECAA 1 AOEAOO8 4EA AOOI
methods are used.

1 Sochastic processes for commodity prices

1 Scenario generation and reduction

9 Stochastic optimising models for investments decisions.
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In particular, they describe how these models should interact in a coherent modelling
approach, as depicted irFigure 3. Financial models and/or econometric models can be
used to model uncertainties, then scenarios can be developed (prices paths, wind
forecast, etc.), to be fed in fundamental models, either deterministic or stochasticMdst
and Keles mte that it is possible to use in parallel a deterministic model on many
scenarios; this is also a way to take into account the fact that the future is not perfectly
known, and some authors classify this kind of approach as "stochastic".

ET £ Oi AGETToh AU AiiPAOETI ¢ OAOOI OO 1 AOAETA
example, different qualities of wind prediction). However, the accuracy is not
guaranteed since it depends otthe choice and quality of the scenarios elaborated.

2.2.4 Solving techniques
When it comes to determine the behaviour of a system given a particular set of input

OAOEAAIT AbGh O1Ti1 A mE O TZ# 1 POEIi EOGACETT xEI 1l CA
i T AAT vhich afgbrithms are used.
One definiton 9] AAOAOEAAO OEA 1 POEI EQOAOQCEIT DBOT AAO«

optimisation is the branch of computational science that seeks to answer the question
'‘What is best?' for problems in whi@ the quality of any answer can be expressed as a
numerical value. Such problems arise in all areas of business, physical, chemical and
biological sciences, engineering, architecture, economics, and management. The range
of techniques available to solve tam is nearly as wide".

For stochastic models, the challenge lies in the number of possible combinations. The
mathematical problem resulting the model formulation can therefore be intractableg
hence, methods such as dynamic programming and stochastic optsation are used, as
described in Figure 4, that gives an overview of some of the most widely used
mathematical techniques to solve stochastic optimisation problems based on Foley et al.
[10].

The term Btochastic programming OAZAOO O1 A AEAIT EI U 1T &£ 0071 /

xEOE AT iDPOOAOO jOPOI COAITETIC6Q8 4dydamicOx i [
programmingd AQOGOT AEAOOEA | BOBI EOADRIAT OOO0T AEAOOEA
Ol Ostdg& stochasth D OT COAI T ET ¢coqgqs 7A Al 110 DPOIT OEAZ

these techniques. These two approaches each have pros and cons, linked to the
computational requirements needed (calculation time, memory needed). The important
parameters include the length otthe optimisation window (humber of time steps) and

the number of stochastic parameters (prices, wind prediction, load, etet) The
interested reader can refer to Kleywegt and Shapiro 200(L1], Wallace and Fleterj7]

for more detail on these methods.

Finally, the resulting mathematic problem can be solved with techniques such as linear
programming (generally with a solver) or alternative approaches such as genetic
algorithms.

10 See Figure 6 for a depiction of deterministic fundamental model, andFigure 7 for a depiction of stochastic
fundamental models.

11 Haesen[31] and Mokrian and Stepherf30] provide good examples on how these parameters impact the results.



Elaboration on : Foley et al, 2010, A strategic review of electricity systems models
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Figure 4: An example of mathematical techniques associated with one type of model
(optimisation system models) z based on Foley et al.[10]

In the two following paragraphs, we use the classification of models in engineeriramd
system families. While the objective functions, constraints and parameters of the
models used for those two categories of studies are different, the solving techniques
used can be similar.

2.3 Engineering models

These models focus on assessing the techreoonomic performance of one specific
technology, in a given system context. This corresponds to the view of a storage
producer trying to maximise its gains.

2.3.1 The price taker approach with perfect forecast

This is the most common method; it means that the @sible revenues for storage are
studied, without taking into account the impact of storage on the market. Marginal
analysis can be performed with one or many services (spot arbitrage, reserve markets,
balancing, wind firming, etc.).

The price taker approah involves two strong assumptions:
T 4EA OO1T OACA80O OEUA EO 110 AEcC AT1O6CE OI
1 A perfect price forecast window, more or less extended according to the study

The authors usually justify the first hypothesis by the fact that they do not sty a
massive or very important penetration of storage in power systems. E.g. Ekmdi2]
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EECEI EhatBtisOsimgile analysis does not take into account the effect that an
electricity storage system would have on the power mrici.e. it is assumed that the
installation is marginal and does not exert any influence on the price léval

Some authors take price effects into account with the help of feedback functions, in
particular if the object of study is the benefit of a particlar storage for power prices
(e.g. dena[3], Sioshansi et al[13]) or the strategic behaviour of market participants
(Sioshansi.[14] or Schill et al.[15]). So far, only a few authors have studied the critical
storage size (compared to that of the system) that would forbid any marginal analysis.
He et al.[16], perform a numerical analysis of arbitrage using reaharket bids data of
the French dayahead market in 2009 thus taking the market clearing explicitly into
account2,

The second hypothesis fgerfect foresighj has been given more attention in literature,
and its impact is well known. E.g. He et g17] O O A O A he(niaiA Kbnit 63 is kind of
valorisation is the fact that the model assumes perfect foresight of market price. The
global profit obtained from the model is therefore overestimated as compared to what can
be capturedin realityd6 8 3 AOAOAT AOOET OO0 PAOAI Oi OA1T OEO
[18] 3, Sioshansi et al[13], Drury et al.[19], Connolly et al.[20] by reducing the perfect
forecast window, or using backcasting techniques i.e. defining a dispatch strategy with
historical data, and applying it to the future. These analyses, still based on deterministic
approaches, indicate that around 80 % of thevalue with long term perfect forecast
could realistically be gained with real operational strategies, by using more or less
complex methods.

Perfect foresight would however be applicable if a storage would not be dispatched by
traders. He et al.[16] propose a coupling of the electricity storage with electricity
markets, i.e."letting the market operator perform a centralized optimization to decide the
optimal allocation of storage resources over the time and among different asda. This
however implies a strong hypothesis on the future of storage regulation.

In the current environment, the perfect market foresight could be challenged by the
increasing production from renewable energy sources leading to an increasing volatility
of power prices. Some authors explicitly address this increasing volatility by studying
the provision of reserve power along with arbitrage, as for example Deb et gR1]
Walawalkar et al.[22], Fraunhofer [23], Drury et al.[19] and He et al[17]. The main
limit of these analyses is that they do not fully take into account the uncertain
interactions between providing energy and ancillary services as remarked by Xi et al.
[24], which means that they tend to overestimate the value of storage.

Some authors compare the suitability of different technologies or combinations thereof.
PNNL[25], Kazempour et al[26] propose a comparison of PHPs and different batteries.
Drury et al. [19] and Fraunhofer [23] compare the performances of diabatic and
adiabatic CAES. Most of these studies do not take grid tariffs into account, even though it

12 The approach requires the availability of the power market bidding curves for each time stepr sufficient data to
replicate these curves (e.g. size and vafble costs of all the biding units).

{3 C:Dt‘wgsA a§sgnjed in thi§ paper ghat thg arbit[age ’priAces’W(’arq knowp 24~h in a’d\iar‘lce in a roljing yvindovy a}ngl ghe o
AA1T AT AET ¢ POEAAO ET T xT AO 1 AOEAO Al 1 OOOA8 4EAQ@éndith3SOET 006 D
up to 80% of the fulknowledge value can be obtained using primitive statistical price forecasting technigues.

14 As for market couplingfor interconnection capacities
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presents little modelling complexity and it can have a strong impact on storage
profitability, as highlighted by dena[27] or Nekrassov et al[28].

It should be noted though that only a few studies are based on extensive datasets (as
discussed in the chapter on storage profitability of this report), even though these

i TAAT 06 OEbtmhiEdeEOU DT OA

In conclusion, deterministic & price takers models are still used for an important range
of studies, due to theirsimplicity of use and designSuch approaches are also used in
investment decision processes as the AEEG, the Italian regulatoses an approach close
to a price taker with perfect forecast in order to rank storage pilot project$29].

2.3.2 The price taker approach without perfect forecast (stochastic &
dynamic modelling)

In recent years, a number of auth@d worked on nondeterministic approaches, or
scenario based deterministic approaches. The objective is to propose realistic
dispatching strategies without a perfect forecast assumption, i.e. facing uncertainty on
the price levels, and also potentially on ther parameters such as wind forecasts, gas
prices, demand levels, etc. We separate here the studies dealing with hybrid system
(wind + storage, often with transmission or other quite specific constraints) from stand
alone storage capturing value on diffegnt markets.

The driver for developing such models, mentioned by all the authors thereafter cited, is
that the perfect forecast approach (or deterministic approach) might not be appropriate
in increasingly volatile markets. Thus authors propose approachdsased on stochastic
programming, (stochastic) dynamic programming, Monte Carlo simulation, etc.

It should be noted however that to our knowledge, and with regard to the articles
reviewed here, few authors propose a clear view of how their modelscould help
stakeholders improve their valuations of storage. So far, most of the studies proposing
actual results (see the profitability chapter) are based on deterministic methods.
Therefore, it would be interesting to provide answers to questions such as:

1 What are the benefits of increasing the models complexity? How different are the
results than with simpler methods?

1 Are simpler methods, such as the one described above, still relevant? Can they be
improved with a better knowledge of their limits thanks to puncual more
complex modelling?

1 Can the model be used on large sets of data? Or can it be used only on restricted
cases, in order to highlight one specific aspect?

It seems difficult, to provide answers to these questions. We will therefore limit our
presentanalysis to an introduction to some of the approaches used.

Mokrian and Stephen[30] propose a series of models aiming at maximising the storage
profits on intraday arbitrage. The authors first state that the existing approach@ rel®

on deterministic pricesz Where the volatility is specifically mentioned, the models once
again optimize over a given historical price profile [...]. None of them model what the plant
would do in an actual market setting using forward looking, dymdc strategie® 8

15 Some of which are more proofs of concept than resable models.
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4EAOAEI OAh OEAU DOI BT OA AT A Aii PAOA OEOAA
DOl COAITETco 1T TAAl EO ET OOI AOGAAAR OEAT A OA
AETATTU A OO001T AEAOOEA DOIT COAITETC 1TAAT & j:
estimate the revenues of storage on an intraay market are then compared. Based on
this research, Haesen et aJ31] propose a summary of the pros and cons of DP and SP
solving techniques:
T 030 AEOEAAO OE Aral&igksAAt éathGtade oderatiér is optifni2el

based on several price expectation trends and the expected optimal value for future

time stages, introducing recourse in the problem formulation (a scenario tree). The

more stages are introduced, the moregdit can be captured at the cost of higher

computational requirements.

1 DP on the other hand has no limitation on the number of stages, but does need to
limit the number of operation possibilities (actions) at each stage to overcome the
OAOOOA 1 A1 EGUAT OKlvis ! AAGEA DOAOANOEOE
optimization of future actions is not depending on information of the past, i.e.
choosing the optimal operation is purely forward lookimg ¢ 8Y ) O | AU 1

compatible with power exchange rules imhichdayAEAAA AEAO AOA bl AA

The authors do not conclude on the respective merits of DP and SP approaches. The
results for both methods are indeed different than those obtained with a LP approach
with expected prices, and the differences seem to vamp the 3 different price paths
simulated. It would be interesting to have quantification of these variations, and of how
they could influence investment decisions. An important limitation of this work is that it
only concerns intraday arbitrage, as decisins need to be taken during the day. As of
today however, the most liquid and relevant markets are still the daphead markets.

In their conclusion, the authors point out several practical results that contradict other
previous studies (with regard to storage capacity (MWh), storage efficiency, and time
horizon for the optimisation). However, some further work would be interesting to fully
assess the interest of their research, and how it could be further used

Xi and Sioshansj24] note that the existing literature did not address well enough three
issues:

1 Most studies do not ceoptimise multiple storage uses. Multi stream valuation is
often proposed, but through the use of strong hypotheses without real €o
optimisation of the revenues,

1 The effects of price and system uncertainty are often neglected in storage
analyses, and

1 Most storage analyses focus on utility scale storage, even though smaller scale
storage is becoming an attractive option.
Therefore, the authors proposeA OOOT AEAOOEA AUT Ai EA -DOIT COA
""""""" Ao

I DPOEI EOAOQEIT 1T &£ AEOOOEAOORA prAdoskOd ukry Ggdl OAC

16 In other words, prices can only be simulated througla Markov process,i.e. futures prices estimates will not use the
prices seen during the previous hour, but only the hour when the new prediction is made, which is an important
limitation.

17 The authorsalso mention the fact that their framework is amenable to multiple revenues (but no further published
work is available to our knowledge)
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presentation of the models and of the assumptions used, which could allow replicating
their approach. The problem is solved in two stages A use case combining up to four
services (arbitrage, regulation, distribution relief and backup) is then studied, using
2009 PJM data over one week. The main conclusion of the authors concerns the
occurrence oftrade-off between services when they are jointly optimised. It is not said
however if this modelling approach can be used to study multiple markets over a larger
time scale, i.e. if their approach is applicable to larger use cases.

Kelesetal[321h xEEI A Al 01 OOAOEI ¢ OEAO O1T11TA 1T &£ O
AAAT O1 O OEA DPOEAA AUT AiEAO T &£ A 111¢ DPAOEI
different modelling approach. It consists of a deterministic optimisation modeland ona

financial mathematical model : the core of the model is still based on an optimisation

problem with a perfect price forecast, but the optimisation is done on 1000 prices paths

(Monte Carlo simulation), generated via a stochastic process. Kelesat [32] conclude

by stressing the fact that gas and CO2 prices should also be modelled using stochastic
processes. Also, the authors note thaOi 1 CT ET ¢ AT A AOOOEAO A£OC
concentrate on the formulation of a stoclséic optimization model instead of the time

consuming Monte Carlo simulation with 1000 optimizing runs, which takes nearly eight

hours for this single plant evaluatiofi..]. A scenario tree can be generated out of the 1000

price paths and incorporated ird a stochastic optimization model or stochastic dynamic
programming model. In this case it is not necessary to run the optimization model
thousands of times, and it can be run with a smaller dimension due to the reduced
stochastic tre® 8

In a similar approach,Griinewald [2] proposes an analysis over 6 years, also with nen
historical prices, as in Keles et a[32]. In this case, the price paths are constructed with
a model providing hourly electricity prices, with a simplified representation of a
competitive electricity marketze. On a second step, a deterministic optimisation problem
is used to perform arbitrage. With this method, Grinewald then performs several
interesting analyses, as the impact of nte wind production for storage, or on the
interest of a capacity market mechanism. The two last examples indicate that this
method could be extended to the study of large use cases (though with high
computational time).

Finally, Qin et al.[33] note that the control and optimisation of storage in a spot market

AT 01 A ET OEAT OU Arkive AMordeACaudAapproddlt O.1] Bu€ that te

Ei BT OOAT O 101 AAO T &£ OAAT ACET O 1T AAAAAasxi OI A
already stressed before. Therefore, the authors review other numerical approaches

such as scenario selection, approximate dynamic programming, and parametric linear
programming. Then an analytical solution is proposed for the storage operation
problem z this work seems interesting and innovative, as the optimal control rule

AT 1T OE O cdmpdrirg th€current price with a pre calculated threshold value to
AAAEAA ET x O M&e&wbrk &indede® dbn s@h hppréashes, as analytical

18 parameters, state variables, decision (action) variables, exogenous variables, stansition function, constraints
and dbjective function.

19 First, discretization of exogenous and state variables allows solving the discretized SDP using backward induction,
then a mixedinteger program in which the value of the true SDP is approximated

20 The model uses rather detailed datafor the demand profiles and renewable production)z according to the
demand addressed to the thermal parc, prices are high or low (if wind production increases, prices are more volatile).
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approaches generalf require strong hypotheses (e.g. uncertainties can be modelled
through Gaussian laws).

In conclusion, Monte Carlo approaches are used by modellers as a pragmatic
intermediary between more complex mathematical models, and deterministic
approaches on historical prices

2.3.3 Modelling of hybrid storage systems

Another sub category of models is used in studies proposing strategies to optimise the
dispatch of a storage jointly with an intermittent energy resource, such as wind or solar.
These models are often extensns of the price taker approaches described above,
generally with one more stochastic variable (such as wind). The attention of these
studies often resides in either the wind forecasting technique, or in the consideration of
specific constraints (limited cable size, local load to satisfy, etc.).

A few typical examples of such papers arorpas et al. 2003[34], Howell et al. 2009
[35], Arsie et at[36], Barton and Infied [37], Deb[21], EPRI38], Garcia Gonzalef39],
Hessami[40]. Very specific constraints are also studied benholm and Sioshansj41]
(interest of storage for limiting the size of a cable between a wind farm and the grid, and
analysis of the tradeoff between fewer arbitrage possibilities and fewer grid cost) and
by Loisel et al[42] [43].

2.3.4 Services mutualisation

As described in Chapter3 of this report, providing only one service with a storage
device can be unprofitable in most market situationsA number of authors therefore
study how to deliver more than one service in order to construct profitable business
models for storage. This is challenging from both the technical point of view (how to
dispatch storage according to different objective funttons?) and from the economical
point of view, as mutualisation services generally imply a tradeff, and the investor
needs to optimise the storage operation. Also, regulatory issues might need to be
addressed the storage is to deliver services to differe segments of the unbundled
energy system as described in Chapterof this report.

For bulk storage, typical combinations studied are arbitrage combined with reserve
power (Drury et al. [19], Fraunhofer [23], Walawalkar [22], Sioshansi et al[5]) and
arbitrage combined with congestion management (e.g. Black and Strbgit], Denholm
et al. [41], Loisel et al.[42]). An exhaustive list of services including some possible
combinations is identified by EPR[38] and SANDIA45].

Even more combinations seem possible for distributed storage. Delille et 6] [47]
systematically derive a matrix (the dimensions being the location of the storage in the
grid and the services) of possible use cases. A list of more than twenty services is
established, along with the potential storage technologies suited to deliver the services
and a list of the places where a storage device could be located on distribution grids.
Combining lsts and matrices allows proposing possible services combinations for a
given technology at a given place. This work focused mainly on distribution
applications, but could be expanded to the whole power system. The applications are
not valued in this work, but the matrices can be used to rank use cases to model.

Loevenbruck [48] studies the effect of competitive requests on a storage device. Two
sets of services are assessed: (i) voltage smoothing, investment deferral and arage,
(i) primary frequency regulation, grid investment deferral and arbitrage as another.
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The interest of this research is that the values obtained with the different services are
not calculated separately: one service is prioritised, and the others areqvided taking
into account one more constraint (the use of storage for the main service).

He et al.[4] propose a novel business model for aggregating the values of electricity
storage, through a system of three successive dians that allow different actors to use
storage, with a given profile. The model itself therefore consists of three sequential
optimisation problems, each integrating as constraints the utilisation curve proposed by
the formerly accepted auctions. It uses simple price taker approach for each of the
auctions thus the auctions themselves are not modelled In another paper, He et al.
[17] also focus on services mutualisation, with a mukstream value assessment on the
French energy market z the three services provided concern three different time
horizons (year ahead, day ahead and intraday), which also allows to perform three
successive optimisation problems. This work could be compared with other models
using a ceoptimisation of the services, instead of a sequential process.

2.4 System models

System studiesusually aim at finding a least cost solution for the supply of energy
services under a number of constraints which could be policies (e.g. REStargets,
climate goals, the pssibility of using nuclear energy) or infrastructure limitations. The
system benefits are determined by comparing model sensitivities with different storage
DAT AOOAOEI T 08 3UOOAI 11T AAIT O OUBPEAAITIT U Al 11
behaviour2,

A number of factors are exogenous to a system model such as demand, commodity
prices; possibly those exogenous variables are themselves the output of other models.
The power generation portfolio might be either exogenously given such as assumed by
Connolly [20] for the Irish system or result from an optimisation model (e.g. the studies
by dena on transport grids[49] and on RES Integration50], Strbac et al[51]). The
regional scope varies between one country, larger regions (e.g. 2050 Roadm@&?2],
EURELECTRIC PowerChoicgs3]) or the world energy system (e.g. IEA World Energy
Outlook [54] 23).

Thus, system studies significantly vary in the sector boundaries, in their objectives and
in their structure. The following cases can be distinguished:

1 Energy system mode(snodelling the energy systemz TIMES models dkén fall in
this category)

1 Market models(as defined by ENTSEE [55]) z these correspond to models

focusing on the demandsupply-equilibrium, and generally use simplified

AOOOI POETT O £ O OAPOAOCATAGREDI @ AR OAG EOA GEIT A
1 Network models(as defined by ENTSE [55] z these correspond to models

focusing on networks management, and generally focusing on a restricted
number of time steps

21 This could be subject to further research,

22 They assume that ifhere is a market, then there is perfect competition, and that therefore actors will behave in the
way that their interest brings a benefit to the system

23 As none of the widely known regional system studies provide sufficient details on their respective melling of
storage, they are not further discussed within this report.
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1 Other system approaches (distributionnetwork studies, islanded systems)

The boundary between market and network models is not always clear. Ideally, a

Obl xAO OUOOAI 1 T1TAAT &6 OET OI A AA AT OE A 1 AOEAC
give insights on both the generation and networks needs W a single model, as for

example Strbac et al. 201§51], VDE 201756].

2.4.1 Modelling storage in whole energy systems

Energy system modeksre typically used for studying national, regional or globaénergy
policy options. They represent a country's or region's entire energy system including
power generation, transport, industry and heating, possibly over longer time periods
including the decommissioning and replacement of assets.

Figure 5 provides a schematic illustration of what an energy system model can be, and
of the solving method of these models (generally, a deterministic optimisation is
carried, for one or several scenarios, through the help of mixed integer linear
programming).
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Figure 5 : Schematic structure of an energy model

In the context of energy storage, these approaches allow studying cross sector impacts
such as between electricity generation and heat (e.g. thermal storage heat pushpor
mobility (E-vehicles). However,so far, these tools include little possibility to model
storage.

The key limiting factor is linked to the aggregated representation of the electrical power
system, without an hourly time step resolution. For examplethe TIMES PanEU model
(Universitat Stuttgart [57]) uses 12 time slices per year (4 seasonal, 3 day levelghe
model described by Remme 200@58] contains 16 time steps (4 seasonal, two week and
two day level, seeFigure 6 left).

In practice, in TIMES models, for each time slice, three inputs can be used, as highlighted

in Figure 6 (right) extracted from [58] : an aveage load per time slice (giving a vision of

the energy demand in GWh per time slice), a peak load (vision of the demand in GW)

and possibly a secure capacity (also giving a vision of the demand in GW). Therefore, it

is possible to propose approaches takip into account the impact of storage, by

i TAEEAUET ¢ OAU OEA AAOA OPAAE T1T1TAA6 T0O0 OOAAODC
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Figure 6 : lllustration of the time resolution of a Times model  z figures extracted from
[58]

Of the studies reviewed, only Connollyj20] uses an energy system model, however
without fully modelling the non-electricity sectors.

2.4.2 Market models

Market modelsaim at optimising parts or the whole of the power generation value chain
i.e. power generation, trade transmission, idtribution and possibly end use of
electricity.

Models for generation scheduling and power flow can be coupled including storage in
one or several value chain steps, but the objective of these models is not to provide
detailed analyses of the network (se@ext section). Thus, the level of detail for a power
flow calculation varies between studies, from a few regions with some interconnection
capacity as used by Strbac et 4b1] (this work also includes a simplified representaion

of the distribution level) to a detailed node by node grid flow calculation, e.g. by VDE
[56]. On the distribution and end use level, power flows and storage dispatch are
usually modelled making assumptions of some "averagregion" rather than for every
node (dena 2012[59], Strbac 2012[51]) and often analyse only one snapshot (peak
demand or peak day). The "downstream" benefits of storage thus always represent
some ggregated value for e.g. a representative customer while the "upstream" benefits
can be quantified for a particular asset as e.g. [8].

These models can be very complex, ndmear and noncontinuous, according to the
constraints that are taken into account. The number of variables can increase rapidly,
leading to high computational time, often requiring some HPEcapacity, particularly in
stochastic approaches using a high number of scenarios to represent the uncertainty of
wind, load, outages, etc. The amount of data needed is also an important challenge.

24 (pystem models, such as MARKAL, Energy Technologies Institute (ETI) ESME model or the DECC2050 accounting framework, do
attempt to include storage. However, they fail to representrsige adequately due to their lack of temporal resolution or limited ability

to capture balancing requirements with respect to alternative balancing optidnsn other words, they do not represent the
contribution of storage to short term flexibility (intra -day and intra-hourly balancing).

25 High Performance Computing
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Thus, not many studies follow an approach consisting of representing large
interconnected systems, from technical constraints of the power plants to the
consumption, and induding some form of storage.

Figure 7 proposes an example of how a power system model can be structured. The grid
representation is not shown explicitly here, as it can vary from one model to another.
Also, investments (generation& network) are not endogenously modelled in the
example, as this feature is not encountered in all models. Two main differences
compared with the energy system models previously introduced can appear.

Firstly, power system models can include a form of sthastic modellingz as explained

in chapter 2.2.3 This implies using scenarios (e.g. based on historical production
profiles), and then elaborating a strategy to face the uncertainties of each scenario, as
indicated below inOEA OOAD p OI POEI EOAOEI 16 | OEDO
the system costs expectation for all scenarios) The second step of the model generally
consists of a wellknown linear optimisation, more or less complex according to the
constraints modelled.

(@}
m)
T

Secondly, the time resolution is much higher, hourly or lower. This allows studying
properly the variations of load and nondispatchable production.
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Figure 7 : Schematic structure of a power system model (example)

The studies using such models can have two objectives: assessing real project, or
analysing the implication of future changes on the system (ex: more renewable
production). The following paragraphs present each aspect more into detail.

%) 7 DOAAOGEAAR OAI AAT OAOET ¢ A OOOAOACUGS CAI[IAD)Mliowsthtwsdi OOAODIT T
step approach: a first model (BID) calculates war values while a second one (Zephir) readies the dispatch The
SDDP[154] model is used to represent systems with a large number of hydro plants (using stoaktic dual dynamic
programming). Another example is the entinental model developedby EDF[62].
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Assessing real storage pro jects

Among the actors following such an approachSOsnight be the most prominent to be
cited, as they to assess the need for network +enforcement and interconnections. Both
network models (providing for a few chosen hours optimal power flows respectig the
N-1 security rule, and estimating the costs of relispatching when the network is
saturated) and market models (simulating one or many year with an hourly resolution,
and a simplified representation of the network, with interconnected coppeplate
zones) are used.Utilities also use market models to evaluate the economics of their
investment projects which requires to understand the evolution of the power markets,
but utility led analysis (along with the models used) present a high strategic interest,
and are therefore rarely published.

The models developed and used by TSOs are thus better suited for providing a public
reference. But as storage is generally not a regulated asset, little information is available
on the modelling of storage in their moels. Recently though, the European Commission
has asked ENTS@® O DOi OEAA A AAOAEI AA DOAOAI
methodology that will be used to select projects within the PCI framework[55] - the
methodology should apply to all infrastructure projects, including storage, and an annex
specifically deals with it. Both the Florence School of Regulation (THINK 2010]) and
the European Association for Storage of Energy (EASE 20[E]) commented on this
document. From the modelling point of view, EASE 2013 mentions two points that are
particularly relevant in our analysis.

Firstly, EASE insists on the fact that existing market and network models do nalivays
include a proper representation of storage, and that therefore the modelling approach
and assumptions that will be used by ENTSE for storage should be well detailed.

3AAT T AT Uh %! sheédgrdsd] ©odicecofomid Delfafe proposed doesinolude
the system cost diminutions linked to the avoided fixed costs in generatisn ) 1
words, the modelling approach used by ENTSP so far does not include an endogenous
investment module, even though the impact of storage (and of interconnectishon the
need for thermal power is important (see for example Strbac et al. 201p51] for

001 OACAGBO Ei PAAO [ OEAOI Al A A H6R]A Eod U
interconnections).

Therefore, some moe development of these market and networks models should come
in future years, to better deal with storage and improve the assessment of its value for
the system. The review by Foley et al. 201f10] on electrical system moded concludes

OAOQEI

I OEAC

T AA

O E AdDcledd challenge for electricity systems models is the proper consideration of

ancillary services, the grid and energy storage systems such as PHES and CAE$ A
some wellestablished system model developers are now working to integte storages.

27 Project of Common Interest- The document presents the general method adopted to calculate the indicators that
the European Commission will use to rate projects. This methodology is also the one dige provide the Ten Year
Network Development Plans (TYNDP)

20%! 3% EO xAll AxAOA OEAO 11 AAI1TETC OO OAGAtheEniodeliing O E
assumptions made can have a strong impact on the results. In particular, the resultairgnl with deterministic

OEAO

AO AT .

APDPOT AAE AAT AA OAOU AEEEAOAT O OEAT OEI OA 1T AGAET AA xEOE A

OET O1I A AA AAOAOEAAA ET AAOAEI Oh ET 1T OAAO O1 All mere OOAEAET |
services than interconnections. In particular, services linked to ancillary services and power quality should be taken into

account in the CBA approachOEAOA ACAET h OEA AOOTI AEAOGAA AEAAOOOAOG EIT
29 For exampled, Cu@rently, EMCAS is being expanded to include energy starig?
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This development could profit from an in depth exchange between stakeholders, in
order to share good practices and ideag this literature review intends to serve as a
contribution to this.

Assessing the impact of storage on evolving and fut ure energy systems

These studies often focus on a specific country and use a rather limited number of
scenarios to represent the uncertainty of load and renewable generation. The models

used are not always described in detail in the publications, as thegnmr be quite complex

Z it is therefore often difficult to understand and fully appreciate all the results. The

interest of studying these models, in addition to those used by the TSOs, is that some of
OEAI EAOA EAAOOOAO OEAO A®dAchiad eQ. tife @ridgendis A£A O
capability to make investment decisions Also, academic studies often focus on more
extreme scenarios than TSOs, as for example systems with 100 % RES supgpile

models used for this kind of studies might be specific.

Studies providing endogenous investment modules are particularly interesting, as they
can predict the evolution of systems under given circumstances (e.g. commaodity prices,
CO2 caps, RES targets) as opposed to normative scenarios (such as a 100% RES system).
This task is complex, as optimal states can be defined for production, transmission,
storage, etc. The number of variables can therefore be very high, and the computational
time also.

The model in Swider[63] minimises costs, asa function of available generation and
transmission capacity, primary energy prices, plant characteristics and demand.
Constraints such as reduced efficiency for part loaded power plants and staup costs

are taken into account. Swider underlines that s model takes into account three
AOPAAOO 1 AOAT ehdogénous invefirieAtAnCsAldeid tHermal technologies
and CAES, stochastic representation of wind power technology and reserve requirements
based on a given reliability margié 8 4 E E Os Heén/agplied tB A use case based on
the German power system, over 20 years. Interconnections are not taken into account,
and therefore not optimised.

Strbac et al[51] propose a model seemingly quite similar, on a broadetsdy and based

on the extension of a former model (presented in Black et §64]). The authors indicate

that their model takes into account all the segments of the electricity value chain, from
production to distribution, and endogenously makes investments in transmission,
distribution, interconnections, generation and storage. Different years are simulated

(2020, 2030, 2050), and a stochastic representation of wind is used, based on Howell et

al. 2009[35]. Grunewald et al[1], describing the model used by Strbac et 4b1], state

O E Adb thelirst time, the system value of storage, expressed as the savings potential in
capital and opeating costs across the system, can be estimated numeriéally x EAOAAO
DOAOGET OO OOUOOAT 11T AAI 66 AEAEI AA tdirlackAD OAOAT
temporal resolution or limited ability to capture balancing requirements8 4 EA OAOI
OAAANOA @AY Grénew@l® Aere could be subject to discussion, as what is an
adequate representation of storage is still an unsettled question. There is still, for
example, no clear vision to what are the boundaries of storage, whether it can be used
simultaneously to provide many services to all the electricity value chain stakeholders,

or rather if it should be restricted to one (or some few selected) service(s) at a time.
Furthermore, the representation proposed by Strbac et al. also uses assumptions
OAAOAEAKATE®DOA WS AO Ascsq
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1 The representation of the transmission system consists of dividing the system in
4 copper plates instead of onez the results of this approach ought to be
compared with detailed Optimal Power Flow (OPF) model with a more detailed
representation of the transmission network.

1 Assumptions about the interconnections between the UK and Europe need to be
quite strong (or somehow arbitrary), as the continental European system is not
modelled

1 The model used to represent distribution grids is basedon statistically
representative networks that need to be validated by other studies

1 Demand and wind data is based on a single year rather than longer time periods
thus limits the statistical robustness of the model.

Also, little information is available an the computation time needed which is a limitation
to the analysis we provide here. In particular it would be interesting to understand if it
would be possible to apply the model to the whole European power system. The work
conducted by Strbac in 2012, thugh innovative from the modelling point of view, needs
to be validated by other studies.

During the last years the results of many power system studies were published for the
German system: of those the dena Il grid stud#9], the dena RES integration studj59]
and the dena distribution grid study[59] are the most prominent; the dena 200927]
and dena 2010[3] pumped hydro storage studies, are also worth mentioning in this
context. All of these were commissioned by the German Energy Agency.

In the following paragraphs, we cite some other studies using detailed bottom up
representations of the system that provide iteresting insights on the modelling
complexity.

The EnergyPLAN model has been used in a number of studies, as e.g. by Salgi[é64].

Lund [66], Connoly et al[20], [67]. The model has been used so far for rather small

systems (Denmark, Ireland). Among the interesting methodological points studied with
EnergyPLAN Salgi documents an assumption that is very often used in such power
systemmi AAI4GA O AAl r8¥ ACCOACAOASG All 01 EOO E
into one unit with average properties. This means that the differences between the single
OTEOO +8Y AOR HEBOAAT DEAAODABOAETI C Al i DOOAOE
factor, and is used in most models (see e.g. Strbac ef%l], Rebours[62]). According to

Salgi, such an assumption has little effect on the resuits

4EA APDPOI AAE AU 4 OBSF s infelesiing /ad thé IbdttdmJ up
representation of the system does not only take into account the variability of wind, but

also its uncertainty, through a stochastic representation of wind and a stochastic unit
commitment modek: (see step 2 inFigure 7, the commitment model is generally based

30 (Qrhe inaccuracy caused by the aggregation has been evaluated by testing the effect of replacing the single CHP unit

with ten different interconnected units each with properties related to actual Danish plants with differences in size,

amount of heat storage, etc. The differences between these two situations were found to correspond to changes in the
specifications for the CHP unit of approximately 3%, andcls differences are now being compensated for in the

%l AOcuo,!. 1T AA1T 68

BB@EA 1T AAl EAO Al EIT OOI U OAOI 1 OOEITh xEOE DPIATTETIGC AITA &
estimated based on the largest-ieed to the system and the ferasted wind power production. Primary reserve varies

depending on the largest online unit and the amount of wind forecasted; the largegeéd possible is 420 MW, and

additional reserve for wind and load forecast errors can range from close to 0 MW hWittle or no wind) to
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on a deterministic optimisation). This work highlights the importance of a good
representation of reserves in such models. SimilarlyBlack et al.[44], in studies on the
UK system, focus on the provision of reserves with storage.

O3EI Pl EEEAASG OADPOAOGAT OACEITT 1T &£ A1 AAOOEAAI Ol
Most of the system models require a large amount of detailed data describing all

elements of the system (e.g. peer plants, nodes of the power grid, geographically
disaggregated generation and demand) and as a result of the complexity, long
calculation times. The studies are therefore often only applicable to a rather limiter

perimeter (e.g. a specific country). Soe authors use models allowing studying very

large perimeters, both geographical and temporal. These approaches could be classified

AO OOEI Pl EEZEAA6h AO OEAU OANOEOA 1 AO0O AAOA
and are based on strong assumptions (nonit commitment module, copperplates, very

few conventional technologies, little constraints considered, etc.).

: i |:'t|"wjj
—>
- .
Storage levels —>
. .
RES hourly production profiles ) —> Max [Load(t)— RES prod(t)] Thermal back
Demand hourly profiles —> x"' up needed
Perfect forecast (i.e. deterministic approach) f
T =time horizon = ~1 year

t =time slice = ~ 8760 ;"'

Figure 8 : Schematic structure of a possible simplified system model

For example, Nyamdash et al69] uses three input parameters: 2006 Irish system
marginal prices, demand profiles and wind generation data. Perfect forecast of wind and
load are assumed, and the operation of storage is purely price driven. The information
is used to build anet load duration curve. The optimal mix to satisfy the load is then
derived from duration curves, with varying amounts of wind and storage. By comparing
cases with and without storage, the benefits for the system are quantified in a rather
simple way.

Heide et al.[70] [71] and other related papers use a similar approach but without the
use of market prices to deduce the use of storage, and on a larger scale, as they study a
European system with 100% RES production. Europe is represented as a copper plate,
with a given annual consumption (3130 TWh/a, 8 years of data of load factors); RES
production is modelled in detail, with a 47 km x 48 km resolution, hourly data. 2020
targets are used for a roughdistribution of wind & PV for countries, and enough wind
and/or solar is added to produce enough energy to meet the load. The need for storage
and/or back-up capacity is then estimated, by comparing for each hour the difference
between load and RES produmn, as illustrated in Figure 8. The required storage
capacity is estimated with different level of RES production, up to an over production of
50 % (the RES annual production amounts to 150 % of the annual energy

APDPOI GEI AGAT U vttt -76
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consumption), which means that a large part of RES production is not used, and thus
storage requirements are less important.

Steinke et al[72] uses a similar approach, but includes an innovative though simplified

representation of network constraints. Europe is divided in copper plates of different

radius (from 25 km to 3000 km). Storage is represented by the time during which it

could satisfy one hour of European consumption. Wind and solar load factors are
available for 50 kn? areas, andor 8 years. The need for back up is estimated as in Heide
et al., with different network constraints, different levels of, storage, and for different

RES portfolios (wind vs solar). System costs are also quantified.

These last two approaches are useful tprovide a vision of the long term evolution of
the system, up to 2050. It would be interesting to compare the results obtained from the
simplified models developed by Heide et al. and Steinke et al. with those obtained from
more complex models, includinga representation of the power market. Such a
benchmark would allow quantifying the validity domain of simplified approaches. Other

OAOAAOAE OOET ¢ OEI EI AO OOEI bl E 860 REAOET AO

system in Jajpn), Pearre and Swaiji74] (RES and ES to permit retirement of codired
generators in Nova Scotig Grunewald [75] [2] (net demand with a simplified
representation of wnventional technologies and a simple storage dispatching strategy)
and Budischak et al[76] (100 % RES supply in the USA).

Pseudo system models:

Engineering models with market feedbackise a modified price taker approach takig
into account how dispatch decisions affect power prices. All system knowledge is
reduced to the price effect which is derived from correlations between historic
(residual) load and power prices. This approach is used by Sioshansi et[dB], He et al.
[4], and dena[3]. Adding feedback to the price taker effect thus allows a fast
guantification of storage that is not yet in the market,

2.4.3 Network models
Network models canalso be dispatching models, but their main focus is to model the

Al 1T xO0 ET OEA COEAh AAOAA 11 +EOAEEI £&50

system (line by line). The interest of these models is to study congestions on grids, and
how these can le relieved (e.g. by grid reinforcement, the addition of storage, etc.).

TSO use network models on a daily basis to control flows in all lines, and also to plan
investments (need for future reinforcement). These optimal power flow models (OPF)
require detailed data about the entire high voltage network, along with power
generation and consumption at all nodes for the time considered. Then probabilistic
approaches are used to verify security rules. Both the models' complexity and the data
needed can make idifficult for actors other than TSO to perform such studies, which
explains the rather limited literature on the subject. However, some TSOs (e.g. National
Grid) provide documentation for simplified representations.

32 Such as for example the N rule: if one line or production unit fails, the resulting power flow should also respect
the maximum admissible intensity. The humber of combinations that have to be simulated tsetrefore very high.
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Figure 9 : Shematic structure of a network model

The VDE 2012 study on storagd56] proposes a good example of an approach
combining both a market model and a network model using load flow simulations. Dena
2010 grid [49] also uses a combination of a power flow model and of a market model.

Silva et al.[77] follow a simplified approach by dividing the UK power network in 16
busess. Then for each hour, the cost of redispatching becau®f network constraints is
evaluated by solving an OPF problem, with and without the presence of storage, which
is dispatched in order to minimise system costs. Silva et al. therefore quantify the total
avoided redispatch, using a simplified UK network mvided by the TSO. This approach
could be extended to other countries; however, assessing the validity of a simplified
1 AOxT OE xEOET 00O OEA 43/60 EAI D Al OI A AA AEAI
Other authors study the value of storage in the presence of network constraints, but
only for specific cases. Examples include Denholm and Sioshaf#l] and Loisel et al.
[42] which both assess a use case with wind production. Among the studies dealing with
this subject and that ae not discussed in detail in this report, we can mention the Lower
Colorado River Authority 2003 [78] (a specific case study in ERCOT, Texas) and
Stanojevic[79] (an optimisation case for an 11 kV K branched distribution network).

The study of planning and optimisation of distribution grids is a field of research in
itself that is not exhaustively discussed in this report. From the methodological point of
view however, it can be mentioned that cosbenefit analyses is often applied to choose
the best options in distribution grids between reinforcement, curtailment, load

shedding or storage, as in Delillg80]. Concerning the modelling itself, various authors
proposed reviews of the existing techniques, e.g. Keane et [@1] and Tan et al[82].

So far, few studies propose estimations of the value that storage could have on a very
large scale. Some probabilistic gpoaches exist, e.g. the one proposed by GE38] and
used by Strbad51], that consist of generating variations of distribution grids. The value
of storage can therefore be evaluated on an importamumber of grids without the need

to use data from real grids, and these results can be added to some more conventional
system modelling using copper plate assumptions. These methods appear quite new,
and still need to be verified.

33 As already described above, Strbac et.&012 uses a similar approach, with 5 zones instead of 16.
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2.4.4 Methods for island sys tems

A number of studies concern the value of storage for small autonomous electricity
networks. There are usually no markets in islanded systems as for practical reasons
derogations were allowed by most legislations regarding deregulation and unbundling
requirements. As a result, most island studies fall in the category of system models.
Island power systems are also considered as a test case for the deployment of both RES
E and storage by the power industry as described by EURELCTIRE].

Examples of island studies include Kaldellis et al.[85] and previous work), Kapsalli et
al. [86], Lobato et al.[87] (economic assessment of providing pmary reserve with
energy storage in isolated systems), Carapellucci et 8] (modelling and optimisation
of an energy generation island with renewable and H2).

In such systems, specific constraints need to be taken into aced, such as low levels of
inertia that would require levels of ancillary services not needed on large
interconnected systems. Delille et a[89] provides a good example of how storage could
provide a form of virtual inertia z a detailed model of an islanded system is used, and
the impact of a unit failure on frequency is assessed through dynamic simulations
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3.1 Motivation for studying storage profitability

The purpose of this chapter is to pvide an overview of the current studies on the
profitability of storage investments and of their findings, along with identifying gaps
and issues for further research activities. Storage has been a full part of power systems
for a long time, as it was aginally developed along with baseload generation However,

the renewed interest in storage of the last years comes from two major trends:
breakthroughs in storage technologies and increasing shares of RES generation. These
drivers led utilities, researchas and policy makers to look at storage under a new
perspectives.

The growing share of intermittent renewable generation in the power system increases
the need for flexibility options thus potentially for storage. Changes in the generation
portfolio (e.g. the decommissioning of nuclear and coal power stations) might also
impact the flexibility of the system. A number of studies assesses the future market size
for electricity storage resulting from RESE additions, e.g. PNN[25].

At the same time, the appearance of new technologies suggests that specific investment
cost of storage could go down. Adiabatic CAES and electrochemical storageidhi NaS
batteries, etc.) are in the focus of many R&D projects.

In addition to these wo drivers, the deregulation of the power industry increased the

need to study the economics of energy storage. Markets were created on which storage

can generate revenues, but boundaries were also created (e.g. regulated vs. deregulated
activities), making it more complex to determine the value of storage. Therefore, a need

01 O1 AAOOGOAT A OEA O1 Axd ADOOET AOGO AAOGAOG &I O C
The results obtained in storage profitability studies are of relevance to three broad

groups of stakeholders:

1 Storage invesbrs
1 Policymakers
1 Researchers or consultants

Most of the published literature comes from the last group but is motivated or
commissioned by either potential investors (in case of the CAES study by Fraunhofer
[23] which was financed by German utilities) or somehow serves as policy support (e.qg.
dena distribution grid study [59]),. Academics and consultants involved in energy
systems R&D typically explore options for future energy systems, develop s@ios and
possible pathways in the continuous transformation of energy system or consider the
interaction between technology, business and regulation. The perspective of the two
potential client stakeholders slightly differs.

Sorage investorsor developers of technology aim at understanding revenue streams
over the economic life of the investment in support of the decision making. Uncertainty
of future earnings is often referred to as one of the main barriers to technology
deployment and further developmert (see e.g. in the EU Commissions Public

34 Other motivations for the investment in power storage can be occasionally found e.g. in China and India where
storage is also regared as an alternative to provide peak power in a system with a large coal and nuclear shaas
discussed by e.g. Ming et gl124], Sivakumaret al.[152])
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Consultation on Generation Adequacy, Capacity Mechanisms and the Internal Market in
Electricity [90], ENDESA 201291]. The perspective opolicy makersand regulators is
different. They are in charge to set fair and harmonised rules across the value chain
segments of the power system and have to understand their rulings' implications for all
market participants.

A possible classification of storage studies cabe done with respect to the boundary
drawn around the object studied. In this report we distinguish between two
approaches. Firstly there are those studies that assess the techeaconomic effects
produced directly by the storage investment on the economiand financial situation of
the investor. In this case the profitability of the investment could also be derived by
analysing the balance sheet of the investor all along the economic life of the storage
project, if this was available. Secondly there are wilies evaluating the "extended" net
benefits of a specific storage project by addressing system effects (that can be attributed
unambiguously to the storage operation). Most of those studies take into account only
part of the power system value chain (sedable 3), while some attempt at a more
ambitious goal by including benefits on the entire power system. From this
categorisation two broad families of studies can be identified, as already introduced in
Chapter2 of this report.

Engineering studiesask if the investment on a specific storage project would be
adequately remunerated from an investor's point of view. This approach aims at
maximizing the investor's profit under specific techical constraints. The investor's
profit is given by the difference between storage revenues and the fixed and variable
costs of the investment. Constraints exist in the form of e.g. the efficiency of charging
and discharging the storage, ramping rates, mimum and maximum reservoir levels or
grid connection constraints. Further differentiation can be made by the number of
services, provided by storage in the model. The system around the storage interacts
through price signals, demand and possible technicabnstraints like a maximum power
rating of a grid connection. Engineering studies are discussed in the first part of this
chapter.

System studieaim at identifying the economic benefits of adding storage to the power
system as a whole. In this case, thebjective function is given bytotal system costs
which are minimised Total system costs are considered in this approach as storage is
embedded in the system and affects system costs directly and indirectly through its
influence on market signals (commody prices, power demand and supply, etc.) and
system infrastructure operation (e.g. grid connections at transmission and distribution
levels). Further differentiation is possible with regard to the system boundaries which
can range from a region's power [ant portfolio to an entire energy system including
industry, the heating sector and transport. The second part of this chapter is dedicated
to system studies.

Engineering studies often confine the economic value of a storage device to only one of
its posgble applications (e.g. power market arbitrage); this could lead to
underestimation of the potential of the storage.

On the other hand, the challenge faced by system studies is the comprehensive
identification of benefits and beneficiaries of storage serees. In only one of the studies
reviewed (Denholm et al. 201392]), both a system and engineering study methodology
is applied to the same case leading to significantly different results.
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It is important to understand the appicability of results obtained from either
approaches. As research work is often based on case studies, the results might not be
easily applicable to new situations. A number of questions are thus relevant for both
engineering and system studies.

1 What is the bandwidth of results? Is there a consensus?

1 How do results change with key input drivers such as: geography, time period
examined, assumptions on commodity prices, storage usage considered?

1 How will profitability develop over time, in particular with regard to a system
with high RESE?

1 What are the effects not captured by the methodology applied?
3.2 Engineering studies

3.2.1 Storage business model

Engineering studies address the value of storage from a pure investor's point of view. As
discussed in Chapter2, they generally quantify the profits generated from the most
common applications of storage: arbitrage and ancillary services. The storage device is
modelled as a "price taker" in the power market using either historical or model
generated price data, the latter requiring specific techneeconomic and market
assumptions (e.g. energy mix and market regulation, gas, coal and carbon prices,
techno-economic features of the storage, future RES deployment).

Generation Trade Trans- Distri- Retail &
mission bution End Use

Power Market Arbitrage

Regulatec
Reserve Markets |:| Deregulated

Figure 10: Main business models for bulk electricity storage in a deregulated power
system

The regulatory context in which energy storage operates is crucial for storage valuation.
Beginning in the 1990s, both the European Uniehand the United States startech deep
transformation of the energy market from vertically integrated monopolistic and partly
state-owned utilities to markets with various competing firms.. To allow this transition,
the regulatory framework set the rules for the unbundling of the powersector with a
differentiated regulation of its value chain segments: generation, wholesale and trade,
transmission, distribution and retail. Of these, only transmission and distribution
remain regulated natural monopolies while generation, trade and retaiare open to
competition and subjected to market rules.

The peculiarity of storage technology is that it can provide services that affect the
regulated as well the deregulated domain. Examples are arbitrage and reserve power

35 In the EU, three successive directivesave set the legal framework for this process: 96/92/E{155], 2003/54/EC
[156] and 2009/72/EC [144]

36 While this is technically also true for any type of power station éible for providing reserve power, storage
devices may derive a significant share of their revenues from providing reserve power.
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application by large scale sttage which can serve the wholesale and trade sector as
well as transmission. The literature reviewed was almost entirely published after 2000
thus taking market deregulation into account.

Power market arbitrageconsists in storage devices charging in hour&hen electricity
prices are low, and discharging in hours when prices are high. Price differences
generally result from system load and increasingly from supply of intermittent RE&
production i.e. from wind and PV.

Reserve marketsare a somewhat speciacase in a deregulated power system. The
unbundling of the power sector created business opportunities to providers of ancillary
services and reserves (e.g. frequency control, secondary and tertiary reserve, and
varying other services). New competitive mekets for these services’ emerged,
providing additional and sometimes significant sources of revenues for electricity
storage plants, as the TSO is usually not allowed to own any production assets that
could provide these services to guarantee the balandeetween supply and demanek.
Reserve market products are usually defined functionally and according to the
timeframe within which power has to be delivered.

Frequenc
CFreqyency q y RFrquuency t Intraday
ontainment Restoration eplacemen Markets
Reserve Reserve
Reserve
30 s/ 15min 5 min / 1h 15min /1h t >1h l
Flywheels [ CAES '
Batteries [ PHS '

Figure 11: Reserve market products (Europe) and typical storage technolog ies

In general storage profits from arbitrage and reserve power depend on two main
drivers: the market's/country's conventional energy mix and the flexibility of the
generation park. Commodity prices (i.e. prices for coal, gas and CO2 emission rights)
strongly affect the storage business case if the electricity price for charging is set by
coal, hydro, nuclear (or occasionally by wind power) and if the electricity price for
discharging is set by a CCGT, an open cycle gas turbine or an oil fired plant. The
flexibility of a generation park also has an impact, particularly if base load plants need
to be operated in part load to allow some load following, thus leading to increased
reserve costs. If CCGT and PHS capital costs are roughly equal as it was theioasél
late 1970s (see Denholm et al. 201[®3]) the business case for storage was determined
by fuels price levels.

In addition to these main services (arbitrage &reserve), two US studies (one by EPRI
[38], the other by SANDIA National Lalj45]) systematically quantify the value of
storage along the entire value chain including the regulated sectors and end use (see
Figure 16). Beaudin et al. D10 [94] make a comprehensive list of benefits of energy
storage by application, with desired technical characteristics of the storage device.

37 In some markets, these were precededr still are complementedby bilateral arrangements

38 See chapter on regulation for anore detailed discussion.
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3.2.2 Technology scope

Figure 11shows particular reserve product provided by certain storage technologies.
Batteries and flywheels are mainly used for primary reserve (also frequency control in
the US) due their fast reaction capability and their (in general) limited storage capacity
as e.g. in several projects on Eapean Islands as described in a report by EURELECTRIC
[84]. Due to the relatively slow reaction time, CAES is usually not able to participate in
secondary reserve while PHS is providing secondary reserve in some couesi

This report focuses mainly on bulk storage: Pumped Hydro Storage (PHS) and
Compressed Air Electricity Storage (CAES). These are the only electricity storage
technologies that are or could be deployed in the range of several hundreds of MW
today.

The results d the engineering studies are presented by technology in a first step, given
different investment costs, variable costs and income streams. Though both
technologies are suited for providing arbitrage and reserve power, there are differences
in the value drivers.

1 PHS incurs almost no variable costs other than the costs for the power purchased
for pumping water into the reservoir. CAES in the scalled diabatic version also
consumes natural gas and might require emission certificates.

1 The round trip efficiency of PHS is usually higher than CAES allowing arbitrage
between lower power prices differences thus during a larger number of hours.
Also, seltdischarge is higher for CAES, in particular in the adiabatic case

1 Investment costs and the certainty with whit these are known differ between
mature PHS, diabatic CAES deployed only twice on a global scale, and not yet
deployed adiabatic CAES.

Less mainstream storage technologies like batteries (especially NaS&bd and Ltion)
and flywheels are usually considred for distributed deployment and in small island
power grids, which are both outside the scope of this literature study. However,
references to recent studies have been included where these technologies are proposed
for the transmission grid (PNNL 2012[25], Walawalkar 2007[22]). A separate section
discusses the results the studies by EPRB8] and SANDIA[45] which derive cross
sector value pools in a technology neutral way.

3.2.3 Pumped Hydro Storage

Table 1shows the main characteristic of pumped hydro engineering studies in terms of
market, years and services. The studies are based on historic market data (from Europe,
the US and Australia) rcept for Loisel et al. 201J42] and PNNL 2012[25] which use
market model generated prices. Revenue sources considered are power market
arbitrage, reserve markets, capacity payments (where theseist) and other revenues.

The graphs inFigure 12 show the profitability figures of those studies providing data in
sufficient detail to be represented in one graph. The bars in the diagram represent the
ranges of annual gross ma@ins found within one study. It is calculated as the difference
between storage profits and variable plus fixed O&M costs per kW of installed (turbine)
capacity. If a study does not explicitly state annual storage revenues, these are

39 Linked to the thermal storage.
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calculated from otherdata published in the respective study. For Loisel et al. 201@2],
annual gross margins have been recalculated from the NPV, applying interest rate,
economic lifetime and inflation rates provided. In the case of He et al. 20 [4] the
figures obtained from the simulation of one week of storage dispatch optimisation have
been extrapolated to an entire year simply multiplying results for 52 weeks. All
AOOOAT AU O1T EOO EAO Ao Afling elchiayé fieEad iAflatiGni O
figures according to Eurostat[97]. The profitably figures are differentiated by colour
according to the combinations of services provided. Arbitrage only figures appear in
dark blue on the Eft hand side ofFigure 12 while figures including revenues from
reserve and other markets are shown in light blue and on the right side. In case a study
publishes results for different power markets, these are shown in separateabs. The
ranges shown inFigure 12 are given by the following variation of the input parameters.

1 Historical power prices taken from different years: Sioshansi et al. 201{5],
Ekman et al. 2010[12], Steffen 2012495], Rangoni 201296] .

Effect of capacity payments: Sioshansi et al. 2015]

Prices generated by a market model making d#fent assumptions on the
storage penetration level PNNL 201225], Loisel et al. 201Q42]

Market Year Technology > py) Author and year
I ERRE

BE 2007 PHS X X X Heetal 2011 [4]
2002-10 PHS X Steffen 2012 [95]

Pl= == 2010-30 PHS +wind X X Loisel et al. 2010 [42]

ES, IT 2008-11 PHS X Rangoni 2012 [96]

PJM 2002-08 PHS X X Sioshansi et al. 2011 [5]
2020 PHS X PNNL 2012 [25]

AUS 2007 PHS + wind X Hessami et al. 2011 [40]

Table 1: PHS mgineering studies overview 4

As authors make different assumptions on the investment CAPEX and on weighted
average costs of capital (WACC), the studies own judgements on profitability are usually

not comparable. Therefore, annuities for an investment in generic PHS are shown as
straight lines in Figure 12. Profitability is reached if gross revenue exceeds these lines. A

total of four possible cases are shown by combining 2 different values for the WAEC

(6% and 10%) with 2 different levels of specific CAPEX (50@p v mmmt OFTE7 OAEAI
the Technology Map of the European Strategic Energy Technology PIE8]).The
different WACC levels represent typical values for a regulated and a deregulated
business. A investment life time of 35 years is assumed for both cases.

40 The study considers California and the North West Power Pool of the US Western Electricity Coordinating Council
41 ARB : Arbitrage ; RES : Reserve ; CAP: Capacity mechanism

42 This report makes noattempt at providing an "adequate" value for costs of capital. A discussion of the current costs
of capital for utilities can e.g. be found in a recent EURELCTRIC reda87].
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